回答:原文:并行计算有什么好的?硬件的性能无法永远提升,当前的趋势实际上趋于降低功耗。那么推广并行技术这个灵丹妙药又有什么好处呢?我们已经知道适当的乱序CPU是必要的,因为人们需要合理的性能,并且乱序执行已被证明比顺序执行效率更高。推崇所谓的并行极大地浪费了大家的时间。并行更高效的高大上理念纯粹是扯淡。大容量缓存可以提高效率。在一些没有附带缓存的微内核上搞并行毫无意义,除非是针对大量的规则运算(比如图形...
回答:云计算、大数据、人工智能都是当前科技界的热门技术,它们支撑了各行各业的发展。下面我通俗地回答一下。1、云计算①、云计算概念通俗讲解IT界只要讲云计算,就会用喝水的故事来通俗的解释,这里我扩展一下来来讲。故事如下:某村子里有一家人要喝水,于是就请人在自家门口挖了口水井,于是一家人喝上了水。这就是本地计算,也就是自己买服务器、装网络、装软件为自己的业务提供服务。这种模式投入成本比较高,需要自己建设、自...
回答:关于云计算的分类,我谈谈自己的看法,如果有理解不对的地方,请大家留言指正。云计算的分类IaaS:基础设施服务,就是一台空的服务器。比如,一个毛坯房,里面啥都没有,这就是IaaS。PaaS:平台即服务,服务器上把基础的软件帮你安装好了。比如,你买了一个精装房,水电都接好了,但是没家具,这就是PaaS。SaaS:软件即服务,服务器上把基础的软件安装好了,也部署好了项目,你直接调用项目的接口就可以得到自...
...数据库系统的功能有直接影响。传统数据库大致可以分为并行优先(例如MongoDB或Teradata)或单存储系统优先(例如PostgreSQL或MySQL)。这两个类别都有其核心设计固有的局限性。这些限制的程度部分是成熟度的函数。但是,对于某...
...数据库系统的功能有直接影响。传统数据库大致可以分为并行优先(例如MongoDB或Teradata)或单存储系统优先(例如PostgreSQL或MySQL)。这两个类别都有其核心设计固有的局限性。这些限制的程度部分是成熟度的函数。但是,对于某些核...
... 160GB 主机内存,以及共计 32GB 的 GPU显存、总计提供8192个并行处理核心、最高15 TFLOPS的单精度浮点运算处理能力和最高1 TFLOPS的双精度峰值浮点处理性能。 GN4实例计算性能力GN4实例最多可提供 2 个 NVIDIA M40 GPU、56 个 vCPU 和 96GB 主...
... 160GB 主机内存,以及共计 32GB 的 GPU显存、总计提供8192个并行处理核心、最高15 TFLOPS的单精度浮点运算处理能力和最高1 TFLOPS的双精度峰值浮点处理性能。 GN4实例计算性能力 GN4实例最多可提供 2 个 NVIDIA M40 GPU、56 个 vCPU 和 96GB ...
...就有一个瓶颈,要把大查询分解成小任务,这些小任务由并行的服务器来完成,我们强调小的机器要多,而不要大的机器CPU数少。因此,数据仓库天生就是MPP、开放架构的CPU加上并行扩展横向扩展数量,从这方面来看,扩展性较...
...就有一个瓶颈,要把大查询分解成小任务,这些小任务由并行的服务器来完成,我们强调小的机器要多,而不要大的机器CPU数少。因此,数据仓库天生就是MPP、开放架构的CPU加上并行扩展横向扩展数量,从这方面来看,扩展性较...
...言背后的故事,你会看到一个新兴的共同主题。1.分布式/并行计算可用于并行计算的编程语言(Cray的Chapel、IBM的X10)、并发编程(Clojure,Fantom,Go)和完整云栈单语言(Opa)。由于云计算所有模式是将任务分发跨越不同地域的...
...新的列表来保存新的答案。也就是说,Map操作是可以高度并行的,这对高性能要求的应用以及并行计算领域的需求非常有用。Reduce操作指的是对一个列表的元素进行适当的合并。虽然它不如映射函数那么并行,但是因为化简总是...
...的计算资源。通过对基因数据的合理切分,实现大规模的并行计算同时处理 TB 级别的样本数据。通过按需获取的计算能力,以及高吞吐的对象存储的使用,大幅降低了计算资源持有的成本和单个样本的处理成本。 整体技术架构...
...并获取文件。在开源产品中类似实现有HDFS。 - MapReduce:并行计算的核心技术框架。使得上层应用软件可以专注于业务逻辑实现,同时利用到分布式并行计算的好处。Map接受和输出属性-值对,使得各节点工作进程可以并行计算它...
...节点,计算性能依旧接近线性增长,提供堪比超算中心的并行计算资源。 神龙异构超算集群性能接近线性增长 这不仅因为支持节点数量多,更因为集成多项自研技术:软硬结合的X-Dragon架构兼具性能和灵活性,50G RDMA超算网...
...行业占据主导地位,而这是个有前景的新市场。然而,向并行计算和物联网的转型可能相对困难。杰富瑞分析师Mark Lipacis本月早些时候下调了英特尔的股票评级,因为它面临着来自英伟达、AMD、ARM的激烈竞争。英特尔收购Mobileye...
...的训练更快吗?我的核心观点是,卷积和循环网络很容易并行化,特别是当你只使用一台计算机或4个GPU时。然而,包括Google的Transformer在内的全连接网络并不能简单并行,并且需要专门的算法才能很好地运行。图1:主计算机中...
ChatGPT和Sora等AI大模型应用,将AI大模型和算力需求的热度不断带上新的台阶。哪里可以获得...
大模型的训练用4090是不合适的,但推理(inference/serving)用4090不能说合适,...
图示为GPU性能排行榜,我们可以看到所有GPU的原始相关性能图表。同时根据训练、推理能力由高到低做了...