并行gpu编程语言SEARCH AGGREGATION

首页/精选主题/

并行gpu编程语言

并行gpu编程语言问答精选

你有什么关于Linux下C++并行编程的好书和经验跟大家分享?

回答:用CUDA的话可以参考《CUDA by example. An introduction to general-purpose GPU programming》用MPI的话可以参考《高性能计算之并行编程技术---MPI程序设计》优就业小编目前只整理出了以下参考书,希望对你有帮助。

omgdog | 540人阅读

目前哪里可以租用到GPU服务器?

回答:这个问题,对许多做AI的人来说,应该很重要。因为,显卡这么贵,都自购,显然不可能。但是,回答量好少。而且最好的回答,竟然是讲amazon aws的,这对国内用户,有多大意义呢?我来接地气的回答吧。简单一句话:我们有万能的淘宝啊!说到GPU租用的选择。ucloud、ucloud、ucloud、滴滴等,大公司云平台,高大上。但是,第一,非常昂贵。很多不提供按小时租用,动不动就是包月。几千大洋撒出去,还...

Nino | 2308人阅读

有什么好用的深度学习gpu云服务器平台?

回答:这个就不用想了,自己配置开发平台费用太高,而且产生的效果还不一定好。根据我这边的开发经验,你可以借助网上很多免费提供的云平台使用。1.Floyd,这个平台提供了目前市面上比较主流框架各个版本的开发环境,最重要的一点就是,这个平台上还有一些常用的数据集。有的数据集是系统提供的,有的则是其它用户提供的。2.Paas,这个云平台最早的版本是免费试用半年,之后开始收费,现在最新版是免费的,当然免费也是有限...

enda | 1196人阅读

如何评价Linux之父Linus认为并行计算基本上就是浪费大家的时间?

回答:原文:并行计算有什么好的?硬件的性能无法永远提升,当前的趋势实际上趋于降低功耗。那么推广并行技术这个灵丹妙药又有什么好处呢?我们已经知道适当的乱序CPU是必要的,因为人们需要合理的性能,并且乱序执行已被证明比顺序执行效率更高。推崇所谓的并行极大地浪费了大家的时间。并行更高效的高大上理念纯粹是扯淡。大容量缓存可以提高效率。在一些没有附带缓存的微内核上搞并行毫无意义,除非是针对大量的规则运算(比如图形...

Shihira | 642人阅读

图形化编程语言未来能否取代文本型编程语言?

回答:不能。原因很简单,图形化语言对于问题的描述能力比不上文本型编程语言。最直观的理解就是数学中几何图形一定程度上可以描述客观世界的数量关系,但它永远都只是文字化数学语言的辅助手段。编程语言也一样,它是数学化语言的升级,图形化编程语言的底层都是文本型编程语言实现的,所以图形化编程语言也只能在特定的领域发挥作用,不能从根本上取代文本型编程语言。但图形化编程语言也有自己的优势,就是直观易于理解。这里就给大家...

cangck_X | 758人阅读

面对对象编程语言有哪些,面对过程编程语言有哪些?

回答:面向对象:c++ java 。 面向过程:c语言

CrazyCodes | 957人阅读

并行gpu编程语言精品文章

  • 在TensorFlow和PaddleFluid中使用多块GPU卡进行训练

    ...数据集上训练或是训练复杂模型往往会借助于 GPU 强大的并行计算能力。 如何能够让模型运行在单个/多个 GPU 上,充分利用多个 GPU 卡的计算能力,且无需关注框架在多设备、多卡通信实现上的细节是这一篇要解决的问题。 这...

    姘存按 评论0 收藏0
  • 128块Tesla V100 4小时训练40G文本,这篇论文果然很英伟达

    ...HPC)资源的内存和计算能力的优势,通过利用分布式数据并行并在训练期间增加有效批尺寸来解决训练耗时的问题 [1],[17]– [20]。这一研究往往聚焦于计算机视觉,很少涉及自然语言任务,更不用说基于 RNN 的语言模型了。由于...

    tomlingtm 评论0 收藏0
  • 如何为你的深度学习任务挑选最合适的 GPU?

    ...否获得更好的结果。我很快发现,不仅很难在多个 GPU 上并行神经网络。而且对普通的密集神经网络来说,加速效果也很一般。小型神经网络可以并行并且有效地利用数据并行性,但对于大一点的神经网络来说,例如我在 Partly Su...

    taohonghui 评论0 收藏0
  • 基准评测TensorFlow、Caffe等在三类流行深度神经网络上的表现

    ...作者也用两个Telsa K80卡(总共4个GK210 GPU)来评估多GPU卡并行的性能。每种神经网络类型均选择了一个小型网络和大型网络。该评测的主要发现可概括如下:总体上,多核CPU的性能并无很好的可扩展性。在很多实验结果中,使用16...

    canopus4u 评论0 收藏0
  • 让AI简单且强大:深度学习引擎OneFlow技术实践

    ...的技术实践》实录。 北京一流科技有限公司将自动编排并行模式、静态调度、流式执行等创新性技术相融合,构建成一套自动支持数据并行、模型并行及流水并行等多种模式的分布式深度学习框架,降低了分布式训练门槛、极...

    chenjiang3 评论0 收藏0
  • [译]新的高性能计算框架——KernelHive

    ...usters and workstations with CPUs and GPUs 2. 相关工作 2.1 集群上的并行编程 MPI(信息传递接口) 是真正的并行编程标准,包括多节点集群和多核 CPU 节点。 MPI 基于分布式内存系统和并行处理的概念 进程间通信通过使用信息传递和大量...

    2shou 评论0 收藏0
  • SpeeDO —— 并行深度学习系统

    ...数。时间效率上远远无法满足当前的工业需求。因此需要并行的深度学习系统提高训练速度。各大公司在构建并行深度学习系统上投入了大量的精力,包括谷歌、Facebook、微软、腾讯和百度等等。为了提高算法的并行效率,这些...

    baiy 评论0 收藏0
  • 步入计算多元化时代 异构计算为什么发展空间巨大?

    ...量计算、海量数据/图片时遇到越来越多的性能瓶颈,如并行度不高、带宽不够、时延高等。为了应对计算多元化的需求,越来越多的场景开始引入GPU、FPGA等硬件进行加速,异构计算应运而生。异构计算(Heterogeneous Computing),...

    gghyoo 评论0 收藏0
  • 做深度学习这么多年还不会挑GPU?这儿有份选购全攻略

    ...大但缺乏支持HIP通过ROCm将英伟达和AMD GPU统一为一种通用编程语言,在编译成GPU组件之前编译成相应的GPU语言。如果我们将所有GPU代码都放在HIP中,这将是一个重要的里程碑,但这很困难,其中就包含了移植TensorFlow和PyTorch代码...

    JohnLui 评论0 收藏0
  • tensorflow用gpu训练

    ...先,确保您的计算机有一张支持CUDA的NVIDIA GPU。CUDA是一种并行计算平台和编程模型,可以在GPU上运行计算密集型任务。您还需要安装NVIDIA的CUDA工具包和cuDNN库,以便TensorFlow可以使用GPU进行训练。 接下来,您需要使用TensorFlow的GP...

    wangxinarhat 评论0 收藏674

推荐文章

相关产品

<