PCASEARCH AGGREGATION

GPU云服务器

安全稳定,可弹性扩展的GPU云服务器。

PCA问答精选

USDP社区版检查节点环境未通过

回答:可将描述信息中Execute部分的命令复制出,并ssh到响应的节点执行,看下具体执行时是什么问题原因导致的执行失败,然后解决该问题。若未发现问题,因执行的是stop usdp agent操作,可以尝试kill到其进程,然后重试。

sunxiaoyong0307 | 866人阅读

usdp2.0 点击开始不是提示illegal arguments

回答:上传的图片裂了,看不见内容

jiangyu2108 | 715人阅读

PCA精品文章

  • Programming Computer Vision with Python (学习笔记三)

    概要 原书对于PCA的讲解只有一小节,一笔带过的感觉,但我发现PCA是一个很重要的基础知识点,在机器机视觉、人脸识别以及一些高级图像处理技术时都被经常用到,所以本人自行对PCA进行了更深入的学习。 PCA是什么 PCA(Pr...

    wpw 评论0 收藏0
  • Programming Computer Vision with Python (学习笔记四)

    上一个笔记主要是讲了PCA的原理,并给出了二维图像降一维的示例代码。但还遗留了以下几个问题: 在计算协方差和特征向量的方法上,书上使用的是一种被作者称为compact trick的技巧,以及奇异值分解(SVD),这些都是什...

    Allen 评论0 收藏0
  • 机器学习之PCA与梯度上升法

    主成分分析(Principle Component Analysis,简称:PCA)是一种非监督学习的机器算法,主要用于数据的降维。 PCA 基本原理 以有2个特征的二维平面举例,如图: 横轴表示特征1,纵轴表示特征2,其中4个点表示二维的特征样本。如...

    curried 评论0 收藏0
  • 数据科学 第 5 章 主成分分析(降维)、相关性

    这两天用学了主成分分析,用的是PCA。主成分分析就是降维,通过线性组合,把多个原始变量合并成若干个主成分,这样每个主成分都变成原始变量的线性组合。所以你想看具体哪个特征对结果的影响大,通过PCA是看不到的...

    ixlei 评论0 收藏0
  • 基于TensorFlow理解三大降维技术:PCA、t-SNE 和自编码器

    代码地址:https://github.com/eliorc/Medium/blob/master/PCA-tSNE-AE.ipynb在这篇文章中,我将尽我所能揭秘三种降维技术:PCA、t-SNE 和自编码器。我做这件事的主要原因是基本上这些方法都被当作黑箱对待,因此有时候会被误用。理解它们将...

    Wildcard 评论0 收藏0
  • 特征工程 vs. 特征提取

    ...0.59。这个结果并不好。那我们能做什么?主成分分析(PCA)是一种预处理的方法,它以创建新的综合预测因子(即主要成分或PCs)的方式旋转预测数据。它通过这样的方式分析:第一个成分占预测数据中大多数(线性)变量或...

    Tecode 评论0 收藏0
  • 【线代&NumPy】第八章 - 特征值和特征向量 | Eigenvalue and

    ...umpy as npimport matplotlib.pyplot as pltfrom sklearn.decomposition import PCAimport pandas as pdfrom sklearn.preprocessing import StandardScaler# iris 数据的 URLurl = xxx# Pandas DataFramedf = pd.rea...

    izhuhaodev 评论0 收藏0

推荐文章

相关产品

<