{eval=Array;=+count(Array);}

问答专栏Q & A COLUMN

Java大数据要学一些什么内容?

kelvinleekelvinlee 回答0 收藏1
收藏问题

8条回答

CloudDeveloper

CloudDeveloper

回答于2022-06-28 15:29

这是一个非常好的问题,也是很多初学者比较关心的问题,作为一名IT从业者,我来回答一下。

首先,所谓的Java大数据通常指的是采用Java语言来完成一些大数据领域的开发任务,整体的学习内容涉及到三大块,其一是Java语言基础,其二是大数据平台基础,其三是场景开发基础。总体上来说,Java大数据的学习内容是比较多的,而且也具有一定的难度。

java语言基础部分的学习内容相对比较明确,由于Java语言本身的技术体系已经比较成熟了,所以学习过程也会相对比较顺利。对于初学者来说,建议围绕JavaWeb开发来制定学习计划,这样也会提升就业竞争力。JavaWeb开发不仅涉及到后端开发知识,还涉及到前端开发知识,整体的知识量还是比较大的,而且在学习的过程中,需要完成大量的实验。

大数据平台部分可以围绕Hadoop来展开,由于当前Hadoop生态已经比较健全了,所以这部分学习内容非常多,需要初学者有一个系统的学习过程。学习Hadoop的初期是完全可以自学的,当前Hadoop的案例也越来越丰富了,所以学习Hadoop也会有一个较好的学习体验。由于Hadoop对于实验场景有一定的要求,所以搭建实验环境是学习Hadoop的一个重要基础。

学习Java大数据一定离不开具体的场景,这里面的场景不仅指硬件场景(数据中心),还需要有行业场景支持,所以学习Java大数据通常都会选择一个行业作为切入点,比如金融行业、医疗行业、教育行业等等。初学者在学习场景开发知识的过程中,并不建议完全采用自学的学习方式,可以考虑在实习岗位上来完成这个阶段的学习任务。

我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。

如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!

评论0 赞同0
  •  加载中...
Hancock_Xu

Hancock_Xu

回答于2022-06-28 15:29

对于大数据想必了解过的人和想要学习大数据的童鞋都是有所了解的,知道大数据培训相关的一些学习内容都有个大概的了解,但是对于大数据培训学习内容的一些比较详细的内容还是有所差距的,我们学习大数据的主要目的就是未来以后可以到大企业去做相关的工作,拿到客观的薪资。那么这就需要我们了解企业对于大数据技术的需求是什么,大数据培训机构大数据课程内容是否包含这些内容。接下来带大家简单了解一下。

第一阶段Java语言基础,此阶段是大数据刚入门阶段,主要是学习一些Java语言的概念、字符、流程控制等。

第二阶段Javaee核心了解并熟悉一些HTML、CSS的基础知识,JavaWeb和数据库,Linux基础,Linux操作系统基础原理、虚拟机使用与Linux搭建、Shell 脚本编程、Linux 权限管理等基本的 Linux 使用知识,通过实际操作学会使用。

第五阶段 Hadoop 生态体系,Hadoop 是大数据的重中之重,无论是整体的生态系统、还是各种原理、使用、部署,都是大数据工程师工作中的核心,这一部分必须详细解读同时辅以实战学习。

第六阶段Spark生态体系,这也是是大数据非常核心的一部分内容,在这一时期需要了解Scala语言的使用、各种数据结构、同时还要深度讲解spark的一系列核心概念比如结构、安装、运行、理论概念等。

2021大数据学习路线图:

评论0 赞同0
  •  加载中...
CODING

CODING

回答于2022-06-28 15:29

Java是目前使用非常广泛的编程语言,它具有的众多特性,特别适合作为大数据应用的开发语言。

Java不仅吸收了C++语言的各种优点,还摒弃了C++里难以理解的多继承、指针等概念,因此Java语言具有功能强大和简单易用两个特征。Java语言作为静态面向对象编程语言的代表,极好地实现了面向对象理论,允许程序员以优雅的思维方式进行复杂的编程。

Java的跨平台应用能力,比C、C++更易用,更容易上手。同时还具有简单性、面向对象、分布式、健壮性、安全性、平台独立与可移植性、多线程、动态性等特点。

更重要的是,Hadoop以及其他大数据处理技术很多都是用Java,例如Apache的基于Java的HBase和Accumulo以及 ElasticSearchas,因此学习Hadoop的一个首要条件,就是掌握Java语言编程。








评论0 赞同0
  •  加载中...
alanoddsoff

alanoddsoff

回答于2022-06-28 15:29

大数据可以实现的应用可以概括为两个方向,一个是精准化定制,第二个是预测。比如像通过

搜索引擎搜索同样的内容,每个人的结果却是大不相同的。再比如精准营销、百度的推广、淘

宝的喜欢推荐,或者你到了一个地方,自动给你推荐周边的消费设施等等。

随着大数据行业的快速发展,也随之出现了一些问题,比如大数据人才的缺失就是目前急需解

决的一个问题,那么很多学大数据的人又出现了一些问题,就是大家普遍担心的就是零基础能

不能学习大数据,会不会不好学?

零基础的人要不要去大数培训机构学习大数据开发吗?答案是可以的去。大数据学习并不是高

深莫测的,虽然对于零基础学员来说不是那么简单,但是只要你认真学习,加上有专业老师的

指导和针对性的训练,相信你也是可以完全掌握大数据的。

零基础的同学学习大数据开发不能急于求成,要分阶段分步骤来一步步完成,大概可以分为四步:

首先,学习一门课程的时候,要对这门课程有一个简单的了解,比如说,要先学习这门课程的

一些专业的术语,学习一些入门概念知道这么课程是做什么的,主要的学习知识有哪些。那么

学习大数据就必须知道什么是大数据,一般大数据的运用领域是那些,避免自己在对大数据一

无所知的情况下就开始盲目学习。

对于零基础的小伙伴们来说,开始入门可能并不是那么容易,需要学习大量的理论知识,阅读

枯燥的教材。因为要掌握一门计算机编程语言,还是很难的。大家都知道计算机编程语言有很

多,比如:R,C++,Python,Java等等。

经过了前两阶段的基础学习后,我们对编程语言也基本掌握了,接下来就可以进行大数据部分

的课程学习了。在这里小编要特别提醒大家:行业真正大数据,82%主讲都是hadoop、

spark生态体系、storm实时开发,初学者请务必认清你要学的是不是真正大数据!

实战训练可以帮助我们更好的理解所学的内容,同时对相关知识加强记忆。在以后的实际运用

中,可以更快的上手,对于相关知识的使用方法也有了经验。

世上无难事只怕有心人,无论你是有基础也好还是没基础也好,只要你认真学习大数据就一定

会学好。

大数据结合人工智可以达到真正的数据科学家。

机器学习:是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论

等多门学科。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的

各个领域,它主要使用归纳、综合而不是演绎。机器学习的算法基本比较固定了,学习起来相

对容易。

:深度学习的概念源于人工神经网络的研究,最近几年发展迅猛。深度学习应用的实

例有AlphaGo、人脸识别、图像检测等。是国内外稀缺人才,但是深度学习相对比较难,算法

更新也比较快,需要跟随有经验的老师学习。

最快的学习方法,就是师从行业专家,毕竟老师有多年积累的经验,自己少走弯路达到事半功

倍的效果。

2018年全新升级大数据学习路线

第一阶段:Linux理论

(1)Linux基础;(2)Linux-shell编程;(3)高并发:lvs负载均衡;(4)高可用&反向代理

第二阶段:Hadoop理论

(1)hadoop-hdfs理论;(2)hadoop-hdfs集群搭建;(3)hadoop-hdfs 2.x & api ;(4)hadoop-MR理论 ;

(5)hadoop-MR开发分析;(6)hadoop-MR源码分析 ;(7)hadoop-MR开发案例

第三阶段:Hive理论

(1)Hive介绍以及安装 ;(2)Hive实战

第四阶段:HBase

(1)HBase介绍以及安装 ;(2)HBase调优

第五阶段: redis理论

(1)redis类型 ; (2) redis高级

第六阶段:Zookeeper理论

(1)Zookeeper介绍 ;(2) Zookeeper使用

第七阶段: Scala语法

(1)Scala语法介绍;(2)scala语法实战

第八阶段: Spark理论

(1)Spark介绍;(2)Spark代码开发流程 ; (3)Spark集群搭建;(4) Spark资源调度原理;

(5)Spark任务调度;(6)Spark案例;(7)Spark中两种最重要shuffle;

(8)Spark高可用集群的搭建;(9)SparkSQL介绍;(10) SparkSQL实战 ;

(11)SparkStreaming介绍;(12)SparkStreaming实战

第九阶段:机器学习介绍

(1) 线性回归详解; (2)逻辑回归分类算法; (3)Kmeans聚类算法; (4)KNN分类算法; (5)决策树 随机森林算法

第十阶段:Elasticsearch理论

(1)Elasticsearch搜索原理; (2) Elasticsearch实战

第十一阶段:Storm理论

(1)Storm介绍以及代码实战;(2)Storm伪分布式搭建以及任务部署; (3)Storm架构详解以及DRCP原理;

(4) 虚拟化理论kvm虚拟化 ; (5) docker

1,_推荐系统理论与实战项目 Part2

2,推荐系统理论与实战 项目Part1

3.实时交易监控系统项目(下)

4,实时交易监控系统项目(上)

5,用户行为分析系统项目1

6,用户行为分析系统项目2

7,大数据批处理之HIVE详解

8,ES公开课 part1

9,spark_streaming_

10,数据仓库搭建详解

11,大数据任务调度

12,流数据集成神器Kafka

13,Spark

14,海量日志收集利器:Flume

15,Impala简介

16,Hive简介

17,MapReduce简介

18海量数据高速存取数据库 HBase

19,浅谈Hadoop管理器yarn原理

20,,分布式全文搜索引擎ElasticSearch Part2

评论0 赞同0
  •  加载中...
siberiawolf

siberiawolf

回答于2022-06-28 15:29

首先肯定需要Java的基础啊,有了Java基础还有学习Hadoop和Spark生态体系,再有一些项目实战+机器学习具备这些技能就可以找工作了

评论0 赞同0
  •  加载中...
DobbyKim

DobbyKim

回答于2022-06-28 15:29

首先先介绍下Java专业和大数据专业要学习的内容

Java开发包括了Java基础,JavaWeb和JavaEE三大块

大数据开发包括Java基础,MySQL基础,Hadoop(HDFS,MapReduce,Yarn,Hive,Hbase,Zookeeper,Flume,Sqoop等),Scala语言(类似于Java,Spark阶段使用),Spark(SparkSQL,SparkStreaming,SparkCore等)Kafka,storm,Flink,Redis,Spark内核,ElasticSearch,Logstash,Kibana,Oozie,Azkaban,Kappa,Kylin,Kudu等

java可以说是大数据最基础的编程语言,

一是因为大数据的本质无非就是海量数据的计算,查询与存储,后台开发很容易接触到大数据量存取的应用场景

二就是java语言本事了,天然的优势,因为大数据的组件很多都是用java开发的像HDFS,Yarn,Hbase,MR,Zookeeper等等,想要深入学习,填上生产环境中踩到的各种坑,必须得先学会java然后去啃源码

说到啃源码顺便说一句,开始的时候肯定是会很难,需要对组件本身和开发语言都有比较深入的理解,熟能生巧慢慢来,等你过了这个阶段,习惯了看源码解决问题的时候你会发现源码真香

Zookeeper,hadoop,hbase,hive,sqoop,flume,kafka,spark,storm等这些框架的作用及基本环境的搭建,要熟练,要会运维,瓶颈分析


评论0 赞同0
  •  加载中...
CrazyCodes

CrazyCodes

回答于2022-06-28 15:29

百战程序员IT问题专业解答

首先,你需要熟悉linux操作系统,大数据是运行在linux上的。

其次,你需要有网络基础。大数据一般是多台服务器组成的集群,通过网络进行通信。

第三,你需要jave基础,把常用的类用法夯实。

好吧,现在开始正式学习大数据。

搭建一个hadoop集群,研究他的计算和存储方式,MapReduce,hdfs。研究他的资源调度方式yarn。接着研究hive,hbase,他们的出现是为了解决hadoop存储和计算的缺陷。继续研究spark和flink,计算模型比MapReduce先进的多。

当然,以上这些东西你学会了,需要用java接口来调用他们的api,比如进行MapReduce计算,创建一个hbase表之类的。

评论0 赞同0
  •  加载中...
xinhaip

xinhaip

回答于2022-06-28 15:29

首先,你需要熟悉linux操作系统,大数据是运行在linux上的。

其次,你需要有网络基础。大数据一般是多台服务器组成的集群,通过网络进行通信。

第三,你需要jave基础,把常用的类用法夯实。

好吧,现在开始正式学习大数据。

搭建一个hadoop集群,研究他的计算和存储方式,MapReduce,hdfs。研究他的资源调度方式yarn。接着研究hive,hbase,他们的出现是为了解决hadoop存储和计算的缺陷。继续研究spark和flink,计算模型比MapReduce先进的多。

当然,以上这些东西你学会了,需要用java接口来调用他们的api,比如进行MapReduce计算,创建一个hbase表之类的。

你可以买几台最便宜的云服务器来学习,每月几百块钱。

如果帮到您,记得采纳。

评论0 赞同0
  •  加载中...

相关问题

最新活动

您已邀请0人回答 查看邀请

我的邀请列表

  • 擅长该话题
  • 回答过该话题
  • 我关注的人
向帮助了您的网友说句感谢的话吧!
付费偷看金额在0.1-10元之间
<