{eval=Array;=+count(Array);}

问答专栏Q & A COLUMN

mysql数据库中,数据量很大的表,有什么优化方案么?

周国辉周国辉 回答0 收藏1
收藏问题

3条回答

2i18ns

2i18ns

回答于2022-06-28 14:27

个人的观点,这种大表的优化,不一定上来就要分库分表,因为表一旦被拆分,开发、运维的复杂度会直线上升,而大多数公司是欠缺这种能力的。所以MySQL中几百万甚至小几千万的表,先考虑做单表的优化。


单表优化

单表优化可以从这几个角度出发:

  • 表分区:MySQL在5.1之后才有的,可以看做是水平拆分,分区表需要在建表的需要加上分区参数,用户需要在建表的时候加上分区参数;分区表底层由多个物理子表组成,但是对于代码来说,分区表是透明的;SQL中的条件中最好能带上分区条件的列,这样可以定位到少量的分区上,否则就会扫描全部分区。

  • 读写分离:最常用的优化手段,写主库读从库;

  • 增加缓存:主要的思想就是减少对数据库的访问,缓存可以在整个架构中的很多地方,比如:数据库本身有就缓存,客户端缓存,数据库访问层对SQL语句的缓存,应用程序内的缓存,第三方缓存(如Redis等);

  • 字段设计:单表不要有太多字段;VARCHAR的长度尽量只分配真正需要的空间;尽量使用TIMESTAMP而非DATETIME;避免使用NULL,可以通过设置默认值解决。

  • 索引优化:索引不是越多越好,针对性地建立索引,索引会加速查询,但是对新增、修改、删除会造成一定的影响;值域很少的字段不适合建索引;尽量不用UNIQUE,不要设置外键,由程序保证;

  • SQL优化:尽量使用索引,也要保证不要因为错误的写法导致索引失效;比如:避免前导模糊查询,避免隐式转换,避免等号左边做函数运算,in中的元素不宜过多等等;

  • NoSQL:有一些场景,可以抛弃MySQL等关系型数据库,拥抱NoSQL;比如:统计类、日志类、弱结构化的数据;事务要求低的场景。

表拆分

数据量进一步增大的时候,就不得不考虑表拆分的问题了:

  • 垂直拆分:垂直拆分的意思就是把一个字段较多的表,拆分成多个字段较少的表;上文中也说过单表的字段不宜过多,如果初期的表结构设计的就很好,就不会有垂直拆分的问题了;一般来说,MySQL单表的字段最好不要超过二三十个。

  • 水平拆分:就是我们常说的分库分表了;分表,解决了单表数据过大的问题,但是毕竟还在同一台数据库服务器上,所以IO、CPU、网络方面的压力,并不会得到彻底的缓解,这个可以通过分库来解决。水平拆分优点很明显,可以利用多台数据库服务器的资源,提高了系统的负载能力;缺点是逻辑会变得复杂,跨节点的数据关联性能差,维护难度大(特别是扩容的时候)。

希望我的回答,能够帮助到你!我将持续分享Java开发、架构设计、程序员职业发展等方面的见解,希望能得到你的关注。

评论0 赞同0
  •  加载中...
Coding01

Coding01

回答于2022-06-28 14:27

MySQL数据库是在国内各大公司最常用的数据库之一,MySQL是一种开源的关系型数据库。而对于数据库的优化我认为可以从以下几个方面进行:

1.数据库配置优化在安装MySQL数据库时,可以对于数据库进行优化,增加数据库的连接数,增加访问量,访问量的增加可以提高查询速度。增加缓存等优化数据库,在查询时,可以直接在缓存中查询数据;

2.表结构优化在创建表结构时,一张数据表中不要创建过多的字段,如果一个功能的数据表结构中字段较多,可以尝试将字段分离出来,分别建成两个或多个表。而且对于字段的长度够用即可,不要设置的过长;

3.索引优化可以在数据库中,对于经常使用的表建立索引,索引可以增加查询的速度。但是索引不是越多越好,过多的索引反而会减慢查询的速度。针对性地建立索引会加速查询,但是对新增、修改、删除会造成一定的影响;

4.SQL查询优化在SQL查询时可以通过优化SQL的查询进行优化,通过增加查询的条件优化SQL,在多表关联的查询中,尽量不要使用自关联和全关联的方式进行,而是使用左右关联的方式进行查询。查询语句将字段写出来,不要使用select * from t(表名)的方式进行。

评论0 赞同0
  •  加载中...
Coly

Coly

回答于2022-06-28 14:27

一、Mysql分库分表方案

1.为什么要分表:

当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。

mysql中有一种机制是表锁定和行锁定,是为了保证数据的完整性。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。

2. mysql proxy:amoeba

做mysql集群,利用amoeba。

从上层的java程序来讲,不需要知道主服务器和从服务器的来源,即主从数据库服务器对于上层来讲是透明的。可以通过amoeba来配置。

3.大数据量并且访问频繁的表,将其分为若干个表

比如对于某网站平台的数据库表-公司表,数据量很大,这种能预估出来的大数据量表,我们就事先分出个N个表,这个N是多少,根据实际情况而定。

某网站现在的数据量至多是5000万条,可以设计每张表容纳的数据量是500万条,也就是拆分成10张表,

那么如何判断某张表的数据是否容量已满呢?可以在程序段对于要新增数据的表,在插入前先做统计表记录数量的操作,当<500万条数据,就直接插入,当已经到达阀值,可以在程序段新创建数据库表(或者已经事先创建好),再执行插入操作。

4. 利用merge存储引擎来实现分表

如果要把已有的大数据量表分开比较痛苦,最痛苦的事就是改代码,因为程序里面的sql语句已经写好了。用merge存储引擎来实现分表, 这种方法比较适合.

举例子:

二、数据库架构(Java自学网推荐 www.javazx.com)

1、简单的MySQL主从复制:

MySQL的主从复制解决了数据库的读写分离,并很好的提升了读的性能,其图如下:

其主从复制的过程如下图所示:

但是,主从复制也带来其他一系列性能瓶颈问题:

  1. 写入无法扩展
  2. 写入无法缓存
  3. 复制延时
  4. 锁表率上升
  5. 表变大,缓存率下降

那问题产生总得解决的,这就产生下面的优化方案,一起来看看。

2、MySQL垂直分区

如果把业务切割得足够独立,那把不同业务的数据放到不同的数据库服务器将是一个不错的方案,而且万一其中一个业务崩溃了也不会影响其他业务的正常进行,并且也起到了负载分流的作用,大大提升了数据库的吞吐能力。经过垂直分区后的数据库架构图如下:

然而,尽管业务之间已经足够独立了,但是有些业务之间或多或少总会有点联系,如用户,基本上都会和每个业务相关联,况且这种分区方式,也不能解决单张表数据量暴涨的问题,因此为何不试试水平分割呢?

3、MySQL水平分片(Sharding)

这是一个非常好的思路,将用户按一定规则(按id哈希)分组,并把该组用户的数据存储到一个数据库分片中,即一个sharding,这样随着用户数量的增加,只要简单地配置一台服务器即可,原理图如下:

如何来确定某个用户所在的shard呢,可以建一张用户和shard对应的数据表,每次请求先从这张表找用户的shard id,再从对应shard中查询相关数据,如下图所示:

①单库单表

单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到。

②单库多表

随着用户数量的增加,user表的数据量会越来越大,当数据量达到一定程度的时候对user表的查询会渐渐的变慢,从而影响整个DB的性能。如果使用mysql, 还有一个更严重的问题是,当需要添加一列的时候,mysql会锁表,期间所有的读写操作只能等待。 可以通过某种方式将user进行水平的切分,产生两个表结构完全一样的user_0000,user_0001等表,user_0000 + user_0001 + …的数据刚好是一份完整的数据。

③多库多表

随着数据量增加也许单台DB的存储空间不够,随着查询量的增加单台数据库服务器已经没办法支撑。这个时候可以再对数据库进行水平区分。

四、分库分表规则

设计表的时候需要确定此表按照什么样的规则进行分库分表。例如,当有新用户时,程序得确定将此用户信息添加到哪个表中;同理,当登录的时候我们得通过用户的账号找到数据库中对应的记录,所有的这些都需要按照某一规则进行。 路由 通过分库分表规则查找到对应的表和库的过程。如分库分表的规则是user_id mod 4的方式,当用户新注册了一个账号,账号id的123,我们可以通过id mod 4的方式确定此账号应该保存到User_0003表中。当用户123登录的时候,我们通过123 mod 4后确定记录在User_0003中。 分库分表产生的问题,及注意事项

1. 分库分表维度的问题

假如用户购买了商品,需要将交易记录保存取来,如果按照用户的纬度分表,则每个用户的交易记录都保存在同一表中,所以很快很方便的查找到某用户的 购买情况,但是某商品被购买的情况则很有可能分布在多张表中,查找起来比较麻烦。反之,按照商品维度分表,可以很方便的查找到此商品的购买情况,但要查找 到买人的交易记录比较麻烦。 所以常见的解决方式有:

  • 通过扫表的方式解决,此方法基本不可能,效率太低了。
  • 记录两份数据,一份按照用户纬度分表,一份按照商品维度分表。
  • 通过搜索引擎解决,但如果实时性要求很高,又得关系到实时搜索。
2. 联合查询的问题

联合查询基本不可能,因为关联的表有可能不在同一数据库中。

3. 避免跨库事务

避免在一个事务中修改db0中的表的时候同时修改db1中的表,一个是操作起来更复杂,效率也会有一定影响。

4. 尽量把同一组数据放到同一DB服务器上

例如将卖家a的商品和交易信息都放到db0中,当db1挂了的时候,卖家a相关的东西可以正常使用。也就是说避免数据库中的数据依赖另一数据库中的数据。

5.一主多备

在实际的应用中,绝大部分情况都是读远大于写。Mysql提供了读写分离的机制,所有的写操作都必须对应到Master,读操作可以在 Master和Slave机器上进行,Slave与Master的结构完全一样,一个Master可以有多个Slave,甚至Slave下还可以挂 Slave,通过此方式可以有效的提高DB集群的 QPS. 所有的写操作都是先在Master上操作,然后同步更新到Slave上,所以从Master同步到Slave机器有一定的延迟,当系统很繁忙的时候,延迟问题会更加严重,Slave机器数量的增加也会使这个问题更加严重。 此外,可以看出Master是集群的瓶颈,当写操作过多,会严重影响到Master的稳定性,如果Master挂掉,整个集群都将不能正常工作。 所以

  • 当读压力很大的时候,可以考虑添加Slave机器的分式解决,但是当Slave机器达到一定的数量就得考虑分库了。
  • 当写压力很大的时候,就必须得进行分库操作。

五、MySQL使用为什么要分库分表

可以用说用到MySQL的地方,只要数据量一大, 马上就会遇到一个问题,要分库分表. 这里引用一个问题为什么要分库分表呢?MySQL处理不了大的表吗? 其实是可以处理的大表的.我所经历的项目中单表物理上文件大小在80G多,单表记录数在5亿以上,而且这个表 属于一个非常核用的表:朋友关系表. 但这种方式可以说不是一个最佳方式. 因为面临文件系统如Ext3文件系统对大于大文件处理上也有许多问题. 这个层面可以用xfs文件系统进行替换.但MySQL单表太大后有一个问题是不好解决: 表结构调整相关的操作基 本不在可能.所以大项在使用中都会面监着分库分表的应用. 从Innodb本身来讲数据文件的Btree上只有两个锁, 叶子节点锁和子节点锁,可以想而知道,当发生页拆分或是添加新叶时都会造成表里不能写入数据.所以分库分表还就是一个比较好的选择了. 那么分库分表多少合适呢? 经测试在单表1000万条记录一下,写入读取性能是比较好的. 这样在留点buffer,那么单表全是数据字型的保持在800万条记录以下, 有字符型的单表保持在500万以下. 如果按 100库100表来规划,如用户业务: 500万*100*100 = 50000000万 = 5000亿记录. 心里有一个数了,按业务做规划还是比较容易的.

分布式数据库架构--排序、分页、分组、实现

六、最近研究分布式数据库架构,发现排序、分组及分页让着实人有点头疼。现把问题及解决思路整理如下。

1.多分片(水平切分)返回结果合并(排序)①Select + None Aggregate Function的有序记录合并排序

解决思路:对各分片返回的有序记录,进行排序去重合并。此处主要是编写排序去重合并算法。

②Select + None Aggregate Function的无序记录合并

解决思路:对各分片返回的无序记录,进行去重合并。

  • 优点:实现比较简单。
  • 缺点:数据量越大,字段越多,去重处理就会越耗时。
③Select + Aggregate Function的记录合并(排序)Oracle常用聚合函数:Count、Max、Min、Avg、Sum。
  • AF:Max、Min
    • 思路:通过算法对各分片返回结果再求max、min值。
  • AF:Avg、Sum、Count
    • 思路:分片间无重复记录或字段时,通过算法对各分片返回结果再求avg、sum、count值。分片间有重复记录或字段时,先对各分片记录去重合并,再通过算法求avg、sum、count值。

比如:

select count(*) from userselect count(deptno) from user;select count(distinct deptno) from user;2.多分片(水平切分)返回结果分页

解决思路:合并各分片返回结果,逻辑分页。

优点: 实现简单。

缺点: 数据量越大,缓存压力就越大。

分片数据量越大,查询也会越慢。

3.多分片(水平切分)查询有分组语法的合并①Group By Having + None Aggregate Function时
  • Select + None Aggregate Function
    • 比如:select job user group by job;
    • 思路:直接去重(排序)合并。
  • Select + Aggregate Function
    • 比如:select max(sal),job user group by job;
    • 思路:同Select + Aggregate Function的记录合并(排序)。
②Group By Having + Aggregate Function时

解决思路:去掉having AF条件查询各分片,然后把数据放到一张表里。再用group by having 聚合函数查询。

4.分布式数据库架构--排序分组分页参考解决方案
  • 解决方案1:Hadoop + Hive。
    • 思路:使用Hadoop HDFS来存储数据,通过Hdoop MapReduce完成数据计算,通过Hive HQL语言使用部分与RDBBS一样的表格查询特性和分布式存储计算特性。
    • 优点:
    1. 可以解决问题
    2. 具有并发处理能力
    3. 可以离线处理
    • 缺点:
    1. 实时性不能保证
    2. 网络延迟会增加
    3. 异常捕获难度增加
    4. Web应用起来比较复杂
  • 解决方案2:总库集中查询。
    • 优点:
    1. 可以解决问题
    2. 实现简单
    • 缺点:
    1. 总库数据不能太大
    2. 并发压力大
5.小结

对 于分布式数据库架构来说,排序、分页、分组一直就是一个比较复杂的问题。避免此问题需要好好地设计分库、分表策略。同时根据特定的场景来解决问题。也可以 充分利用海量数据存储(Hadoop-HDFS|Hive|HBse)、搜索引擎(Lucene|Solr)及分布式计算(MapReduce)等技术来 解决问题。别外,也可以用NoSQL技术替代关系性数据库来解决问题,比如MogonDB edis。

即使爬到最高的山上,一次也只能脚踏实地地迈一步。

评论0 赞同0
  •  加载中...

最新活动

您已邀请0人回答 查看邀请

我的邀请列表

  • 擅长该话题
  • 回答过该话题
  • 我关注的人
向帮助了您的网友说句感谢的话吧!
付费偷看金额在0.1-10元之间
<