资讯专栏INFORMATION COLUMN

js数据结构和算法(四)图和图算法

Doyle / 1957人阅读

摘要:分别被命名为和。图的遍历深度优先遍历深度优先遍历,也有称为深度优先搜索,简称为。拓扑排序算法与类似,不同的是,拓扑排序算法不会立即输出已访问的顶点,而是访问当前顶点邻接表中的所有相邻顶点,直到这个列表穷尽时,才会将当前顶点压入栈中。

图的定义

图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合。

有向图


有向边:若从顶点ViVj的边有方向,则称这条边为有向边,也成为弧(Arc),用有序偶来表示,Vi称为弧尾,Vj称为弧头。

无序图

**
无向边:**若顶点ViVj之间的边没有方向,则称这条边为无向边(Edge),用无序偶(Vi,Vj)来表示。

简单图

简单图:在图结构中,若不存在顶点到其自身的边,且同一条边不重复出现,则称这样的图为简单图。

图类 表示顶点

创建图类的第一步就是要创建一个Vertex类来保存顶点和边。这个类的作用和链表、二叉搜索树的Node类一样。Vertex类有两个数据成员:一个用于标识顶点,另一个表明是否被访问过的布尔值。分别被命名为labelwasVisited

function Vertex(label){
    this.label = label;
}

我们将所有顶点保存在数组中,在图类里,可以通过他们在数组中的位置引用他们

表示边

图的实际信息都保存在“边”上面,因为他们描述了图的结构。二叉树的一个父节点只能有两个子节点,而图的结构却要灵活得多,一个顶点既可以有一条边,也可以有多条边和它相连。

我们将表示图的边的方法成为邻接表或者邻接表数组。它将存储由顶点的相邻顶点列表构成的数组

构建图

定义如下一个Graph类:

function Graph(v){
    this.vertices = v;//vertices至高点
    this.edges = 0;
    this.adj = [];
    for(var i =0;I

这个类会记录一个图表示了多少条边,并使用一个长度与图的顶点数来记录顶点的数量。

function addEdge(){
    this.adj[v].push(w);
    this.adj[w].push(v);
    this.edges++;
}

这里我们使用for循环为数组中的每个元素添加一个子数组来存储所有的相邻顶点,并将所有元素初始化为空字符串。

图的遍历 深度优先遍历

深度优先遍历(DepthFirstSearch),也有称为深度优先搜索,简称为DFS

比如在一个房间内寻找一把钥匙,无论从哪一间房间开始都可以,将房间内的墙角、床头柜、床上、床下、衣柜、电视柜等挨个寻找,做到不放过任何一个死角,当所有的抽屉、储藏柜中全部都找遍后,接着再寻找下一个房间。

深度优先搜索:

深度优先搜索就是访问一个没有访问过的顶点,将他标记为已访问,再递归地去访问在初始顶点的邻接表中其他没有访问过的顶点

为Graph类添加一个数组:

this.marked = [];//保存已访问过的顶点
for(var i=0;i

深度优先搜索函数:

function dfs(v){
    this.marked[v] = true;
    //if语句在这里不是必须的
    if(this.adj[v] != undefined){
        print("Visited vertex: " + v );
        for each(var w in this.adj[v]){
            if(!this.marked[w]){
                this.dfs(w);
            }
        }
    }
}
广度优先搜索

广度优先搜索(BFS)属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为止。

广度优先搜索从第一个顶点开始,尝试访问尽可能靠近它的顶点,如下图所示:

其工作原理为:

 1. 首先查找与当前顶点相邻的未访问的顶点,将其添加到已访问顶点列表及队列中;
 2. 然后从图中取出下一个顶点v,添加到已访问的顶点列表
 3. 最后将所有与v相邻的未访问顶点添加到队列中

下面是广度优先搜索函数的定义:

function bfs(s){
    var queue = [];
    this.marked = true;
    queue.push(s);//添加到队尾
    while(queue.length>0){
        var v = queue.shift();//从队首移除
        if(v == undefined){
            print("Visited vertex: " + v);
        }
        for each(var w in this.adj[v]){
            if(!this.marked[w]){
                this.edgeTo[w] = v;
                this.marked[w] = true;
                queue.push(w);
            }
        }
    }
}

最短路径

在执行广度优先搜索时,会自动查找从一个顶点到另一个相连顶点的最短路径

确定路径

要查找最短路径,需要修改广度优先搜索算法来记录从一个顶点到另一个顶点的路径,我们需要一个数组来保存从一个顶点操下一个顶点的所有边,我们将这个数组命名为edgeTo

this.edgeTo = [];//将这行添加到Graph类中

//bfs函数
function bfs(s){
    var queue = [];
    this.marked = true;
    queue.push(s);//添加到队尾
    while(queue.length>0){
        var v = queue.shift();//从队首移除
        if(v == undefined){
            print("Visited vertex: " + v);
        }
        for each(var w in this.adj[v]){
            if(!this.marked[w]){
                this.edgeTo[w] = v;
                this.marked[w] = true;
                queue.push(w);
            }
        }
    }
}
拓扑排序算法

拓扑排序会对有向图的所有顶点进行排序,使有向边从前面的顶点指向后面的顶点。
拓扑排序算法与BFS类似,不同的是,拓扑排序算法不会立即输出已访问的顶点,而是访问当前顶点邻接表中的所有相邻顶点,直到这个列表穷尽时,才会将当前顶点压入栈中。

拓扑排序算法被拆分为两个函数,第一个函数是topSort(),用来设置排序进程并调用一个辅助函数topSortHelper(),然后显示排序好的顶点列表

拓扑排序算法主要工作是在递归函数topSortHelper()中完成的,这个函数会将当前顶点标记为已访问,然后递归访问当前顶点邻接表中的每个顶点,标记这些顶点为已访问。最后,将当前顶点压入栈中。

//topSort()函数
function topSort(){
    var stack = [];
    var visited = [];
    for(var i =0;i           
               
                                           
                       
                 

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/85425.html

相关文章

  • 算法-图算法

    摘要:图的定义用图对现实中的系统建模可以用图对现实中的很多系统建模比如对交通流量建模顶点可以表示街道的十字路口边可以表示街道加权的边可以表示限速或者车道的数量建模人员可以用这个系统来判断最佳路线及最有可能堵车的街道任何运输系统都可以用图来建模比如 图的定义 用图对现实中的系统建模 可以用图对现实中的很多系统建模. 比如对交通流量建模, 顶点可以表示街道的十字路口, 边可以表示街道. 加权的边...

    Anshiii 评论0 收藏0
  • 数据结构算法:二分查找

    摘要:为检查长度为的列表,二分查找需要执行次操作。最后需要指出的一点是高水平的读者可研究一下二叉树关于二叉树,戳这里数据结构与算法二叉树算法常见练习在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。 常见数据结构 简单数据结构(必须理解和掌握) 有序数据结构:栈、队列、链表。有序数据结构省空间(储存空间小) 无序数据结构:集合、字典、散列表,无序...

    zsirfs 评论0 收藏0
  • 数据结构算法:二分查找

    摘要:为检查长度为的列表,二分查找需要执行次操作。最后需要指出的一点是高水平的读者可研究一下二叉树关于二叉树,戳这里数据结构与算法二叉树算法常见练习在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。 常见数据结构 简单数据结构(必须理解和掌握) 有序数据结构:栈、队列、链表。有序数据结构省空间(储存空间小) 无序数据结构:集合、字典、散列表,无序...

    you_De 评论0 收藏0
  • 数据结构算法:二分查找

    摘要:为检查长度为的列表,二分查找需要执行次操作。最后需要指出的一点是高水平的读者可研究一下二叉树关于二叉树,戳这里数据结构与算法二叉树算法常见练习在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。 常见数据结构 简单数据结构(必须理解和掌握) 有序数据结构:栈、队列、链表。有序数据结构省空间(储存空间小) 无序数据结构:集合、字典、散列表,无序...

    gotham 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<