摘要:说明本文所有操作均在环境下进行。任何可以使用来编写的应用,最终会由编写。书中分别介绍了如何使用和结合进行开发。工具会创建作业,发送给各个,同时监控整个作业的执行过程。准备好的运行环境之后开始搭建的运行环境,参考单节点集群配置。
说明
本文所有操作均在 linux 环境下进行。
转载请注明出处。
"任何可以使用JavaScript来编写的应用,最终会由JavaScript编写。"
作为一名小前端,我深受 Jeff Atwood 前辈的鼓舞。上面这条定律便是他提出来的。
背景最近在学习 Hadoop ,权威指南 中介绍到了 Hadoop Streaming,说 Hadoop Streaming 是 Hadoop 提供的一个编程工具,它允许用户使用任何可执行文件或者脚本文件作为 Mapper 和 Reducer 。书中分别介绍了如何使用 Ruby 和 Python 结合 Hadoop Streaming 进行开发。没有 JS,不开心。我们 JS 这么强大,一定也可以。。。
分析我们先来分析 Hadoop Streaming 的原理,如下:
mapper 和 reducer 会从标准输入中读取用户数据,一行一行处理后发送给标准输出。Streaming 工具会创建 MapReduce 作业,发送给各个 TaskTracker,同时监控整个作业的执行过程。
分析完原理之后我们知道了只需构造 mapper 和 reducer 即可,他们的工作是从标准输入读取用户数据,以行(hang)为单位处理完成后发送到标准输出。
准备JavaScript 如何从标准输入输出读写数据呢?别担心,我们有 NodeJS。
准备好 JavaScript 的运行环境之后开始搭建 Hadoop 的运行环境,参考 Hadoop: 单节点集群配置。
先贴目录结构:
$ find . . ./map ./reduce ./wordcount.txt
map 中的代码如下:
#!/usr/bin/env node // 引入readline模块 const readline = require("readline") // 创建readline接口实例 const rl = readline.createInterface({ input:process.stdin, output:process.stdout }) rl.on("line", line => { // 分离每一行的单词 line.split(" ").map((word) => { // 将单词以如下格式写入标准输出 console.log(`${word} 1`) }) }) rl.on("close", () => { process.exit(0) })
reduce 中的代码如下:
#!/usr/bin/env node const readline = require("readline") const rl = readline.createInterface({ input:process.stdin, output:process.stdout, terminal: false }) // 存储键值对let words = new Map() rl.on("line", line => { // 解构赋值 const [word, count] = line.split(" ") // 如果 Map 中没有该单词,则将该单词放入 Map ,即第一次添加 if (!words.has(word)) { words.set(word, parseInt(count)) } else { // 如果该单词已存在,则将该单词对应的 count 加 1 words.set(word, words.get(word) + 1) } }) rl.on("close", () => { words.forEach((v, k) => { // 将统计结果写入标准输出 console.log(`${k} ${v}`) }) process.exit(0) })
wordcount.txt 中的内容如下:
JS Java JS Python JS Hadoop
目前 map 和 reduce 这两个程序还无法运行,需要加可执行权限,方法如下:
$ chmod +x map reduce
现在可以在终端测试一下程序是否能正确执行:
$ cat wordcount.txt | ./map | ./reduce JS 3 Java 1 Python 1 Hadoop 1
可以看到,已经正确统计出了词频。
接下来只需把作业提交给 Hadoop ,让它去执行就可以了。
提交作业至 Hadoop此时要确保 Hadoop 正常运行
在 HDFS 中创建目录:
$ hdfs dfs -mkdir input
将待处理文件上传至 HDFS:
$ hdfs dfs -put wordcount.txt input
此时可以通过 web 接口查看文件是否正确上传:
http://localhost:50070/explor...
如下图所示:
向 Hadoop 提交作业
$ hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-streaming-2.7.3.jar > -input input/wordcount.txt > -output output > -mapper map > -reducer reduce
检查计算结果:
$ hdfs dfs -cat output/* Hadoop 1 JS 3 Java 1 Python 1
可以看到与之前的结果一致。
解释一下 Hadoop Streaming 的几个参数:
-input:输入文件路径
-output:输出文件路径
-mapper:用户自己写的 mapper 程序,可以是可执行文件或者脚本
-reducer:用户自己写的 reducer 程序,可以是可执行文件或者脚本
参考资料Hadoop Streaming 编程
Node.js 命令行程序开发教程
Readline | Node.js v7.7.0 Documentation
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/81920.html
摘要:虽然广受欢迎,但是仍受到来自另外一个基于的机器学习库的竞争年出现的。还提供更传统的机器学习功能的库,包括神经网络和决策树系统。和的机器学习库。顾名思义,是用于神经网络机器学习的库,便于将浏览器用作数据工作台。 关于机器学习的11个开源工具 翻译:疯狂的技术宅英文标题:11 open source tools to make the most of machine learning英文连...
阅读 2582·2021-11-24 09:38
阅读 2613·2019-08-30 15:54
阅读 929·2019-08-30 15:52
阅读 1916·2019-08-30 15:44
阅读 2724·2019-08-30 13:48
阅读 777·2019-08-29 16:21
阅读 1006·2019-08-29 14:03
阅读 2222·2019-08-28 18:15