摘要:前言项目中的由升级至。已经弃用,相应功能由实现,直接替换即可。构造报文调整调整成弃用,相关功能由实现。类型表示精确查找的文本,不需要进行分词。查询字段时,使用表示改版后,设置了的情况下,也要设置,否则会报。
前言
项目中的es由ver.1.4.5升级至ver.5.2.0。
安装elasticSearch#下载 wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-5.2.0.tar.gz # 解压 tar zxvf elasticsearch-5.5.0.tar.gz修改elasticsearch.yml
$ES_HOME/config/elasticsearch.yml
在这里不详细展开elasticsearch.yml的各个配置项,附上链接。
配置es外部链接
lasticsearch-head是一个很好的可视化前端框架,方便用可视化界面对es进行调用。elasticsearch-head在Github的地址如下:https://github.com/mobz/elast...,安装也不复杂,由于它是一个前端的工具,因此需要我们预先安装了node和npm,之后执行下面的步骤:
git clone git://github.com/mobz/elasticsearch-head.git cd elasticsearch-head npm install
安装完成后,运行命令npm run start就行。
调整弃用api的兼容问题 1.setting1.4.5的org.elasticsearch.common.settings.ImmutableSettings已经弃用,生成配置对象setting的方式改成:
Settings settings = Settings.builder().put("cluster.name", clusterName).put("client.transport.sniff", true).build();2.InetSocketTransportAddress
org.elasticsearch.common.transport.InetSocketTransportAddress#InetSocketTransportAddress(java.lang.String, int)方法已经弃用,注入集群地址的方式改成:
clusterNodeAddressList.add(new InetSocketTransportAddress(InetAddress.getByName(host), 9300));3.TransportClient
org.elasticsearch.client.transport.TransportClient#TransportClient(org.elasticsearch.common.settings.Settings),该构造方法已经弃用,生成TransportClient实例的方式改成:
transportClient = new PreBuiltTransportClient(settings);4.ClusterHealthStatus
org.elasticsearch.action.admin.cluster.health.ClusterHealthStatus类已经弃用,相同功能由org.elasticsearch.cluster.health.ClusterHealthStatus继承
5.ScriptSortBuilder调整原版写法:
Map
调整为:
Map6.FilterBuilder调整
org.elasticsearch.index.query.FilterBuilder类已经弃用,基本上从2.x版本开始,Filter就已经弃用了(不包括bool查询内的filter),所有FilterBuilder全都要用QueryBuilder的各种子类来调整:
1.org.elasticsearch.index.query.BoolFilterBuilderBoolFilterBuilder boolFilterBuilder = FilterBuilders.boolFilter();
调整为:
BoolQueryBuilder boolFilterBuilder = new BoolQueryBuilder();2.org.elasticsearch.index.query.NestedFilterBuilder
filterBuilder = FilterBuilders.nestedFilter(param.getPath(), boolFilterBuilder);
调整为:
filterBuilder = new NestedQueryBuilder(param.getPath(), boolFilterBuilder, ScoreMode.None);3.org.elasticsearch.index.query.MissingFilterBuilder
5.x版本中,missing关键字已经弃用,其功能由其逆运算exist继承。
MissingFilterBuilder missingFilterBuilder = FilterBuilders.missingFilter(paramName); if (param.getNvlType() == QueryFieldType.EXISTS) { filterBuilder = FilterBuilders.boolFilter().mustNot(missingFilterBuilder); } if (param.getNvlType() == QueryFieldType.MISSING) { filterBuilder = FilterBuilders.boolFilter().must(missingFilterBuilder); }
调整为:
ExistsQueryBuilder existsQueryBuilder = new ExistsQueryBuilder(paramName); if (param.getNvlType() == QueryFieldType.EXISTS) { filterBuilder = new BoolQueryBuilder().must(existsQueryBuilder); } if (param.getNvlType() == QueryFieldType.MISSING) { filterBuilder = new BoolQueryBuilder().mustNot(existsQueryBuilder); }4.org.elasticsearch.index.query.TermFilterBuilder
filterBuilder = FilterBuilders.termFilter(paramName, param.getEqValue());
调整为:
filterBuilder = new TermQueryBuilder(paramName, param.getEqValue());5.org.elasticsearch.index.query.TermsFilterBuilder
filterBuilder = FilterBuilders.inFilter(paramName, param.getInValues());
调整为:
filterBuilder = new TermsQueryBuilder(paramName, param.getInValues());6.org.elasticsearch.index.query.RangeFilterBuilder
//gte if (null != param.getGteValue()) { filterBuilder = FilterBuilders.rangeFilter(paramName).gte(param.getGteValue()); } //gt if (null != param.getGtValue()) { filterBuilder = FilterBuilders.rangeFilter(paramName).gt(param.getGtValue()); } //lte if (null != param.getLteValue()) { filterBuilder = FilterBuilders.rangeFilter(paramName).lte(param.getLteValue()); } //lt if (null != param.getLtValue()) { filterBuilder = FilterBuilders.rangeFilter(paramName).lt(param.getLtValue()); }
调整为:
//gte if (null != param.getGteValue()) { filterBuilder = new RangeQueryBuilder(paramName).gte(param.getGteValue()); } //gt if (null != param.getGtValue()) { filterBuilder = new RangeQueryBuilder(paramName).gt(param.getGtValue()); } //lte if (null != param.getLteValue()) { filterBuilder = new RangeQueryBuilder(paramName).lte(param.getLteValue()); } //lt if (null != param.getLtValue()) { filterBuilder = new RangeQueryBuilder(paramName).lt(param.getLtValue()); }7.search_type=count
原来我们想要计算文档的需要用到search_type=count,现在5.0已经将该API移除,取而代之你只需将size置于0即可:
GET /my_index/_search?search_type=count { "aggs": { "my_terms": { "terms": { "field": "foo" } } } }
调整为:
#5.0以后 GET /my_index/_search { "size": 0, "aggs": { "my_terms": { "terms": { "field": "foo" } } } }8.RangeBuilder
org.elasticsearch.search.aggregations.bucket.range.RangeBuilder已经弃用,相应功能由org.elasticsearch.search.aggregations.bucket.range.RangeAggregationBuilder实现,直接替换即可。
9.TopHitsAggregationBuilderorg.elasticsearch.search.aggregations.metrics.tophits.TopHitsBuilder已经弃用,相应功能由org.elasticsearch.search.aggregations.metrics.tophits.TopHitsAggregationBuilder实现,直接替换即可。
10.FiltersAggregationBuilderorg.elasticsearch.search.aggregations.bucket.filters.FiltersAggregationBuilder构造报文调整
FiltersAggregationBuilder filtersAggregationBuilder = AggregationBuilders.filters(aggregationField.getAggName()); LufaxSearchConditionBuilder tmpConditionBuilder = new LufaxSearchConditionBuilder(); for (String key : aggregationField.getFiltersMap().keySet()) { LufaxFilterCondition tmpLufaxFilterCondition = aggregationField.getFiltersMap().get(key); FilterBuilder tmpFilterBuilder = tmpConditionBuilder.constructFilterBuilder(tmpLufaxFilterCondition.getAndParams(),tmpLufaxFilterCondition.getOrParams(),tmpLufaxFilterCondition.getNotParams()); filtersAggregationBuilder.filter(key, tmpFilterBuilder); }
调整成:
List11.HighlightBuilder;keyedFilters = new LinkedList (); LufaxSearchConditionBuilder tmpConditionBuilder = new LufaxSearchConditionBuilder(); for (String key : aggregationField.getFiltersMap().keySet()) { LufaxFilterCondition tmpLufaxFilterCondition = aggregationField.getFiltersMap().get(key); QueryBuilder tmpFilterBuilder = tmpConditionBuilder.constructFilterBuilder(tmpLufaxFilterCondition.getAndParams(),tmpLufaxFilterCondition.getOrParams(),tmpLufaxFilterCondition.getNotParams()); keyedFilters.add(new FiltersAggregator.KeyedFilter(key, tmpFilterBuilder)); } FiltersAggregationBuilder filtersAggregationBuilder = AggregationBuilders.filters(aggregationField.getAggName(), keyedFilters.toArray(new FiltersAggregator.KeyedFilter[]{}));
org.elasticsearch.search.highlight.HighlightBuilder弃用,相关功能由org.elasticsearch.search.fetch.subphase.highlight.HighlightBuilder实现。
12.OptimizeRequestBuilderorg.elasticsearch.action.admin.indices.optimize.OptimizeRequestBuilder 已经弃用,聚合索引的功能由org.elasticsearch.action.admin.indices.forcemerge.ForceMergeRequestBuilder来实现。
13.IndicesAliasesRequestBuilder 1.newAddAliasAction旧版删除了AliasAction类的newAddAliasAction方法,故而IndicesAliasesRequestBuilder添加AliasActions应该:
requestBuilder.addAliasAction(AliasAction.newAddAliasAction(toIndex, indexAlias));
调整成
requestBuilder.addAliasAction(IndicesAliasesRequest.AliasActions.add().index(toIndex).alias(indexAlias));2.newRemoveAliasAction
旧版删除了AliasAction类的newRemoveAliasAction方法,故而IndicesAliasesRequestBuilder删除AliasActions应该:
requestBuilder.addAliasAction(AliasAction.newRemoveAliasAction(fromIdx, indexAlias));
调整成
requestBuilder.addAliasAction(IndicesAliasesRequest.AliasActions.remove().index(fromIdx).alias(indexAlias));14.AbstractAggregationBuilder的子类变更 1.org.elasticsearch.search.aggregations.bucket.terms.TermsBuilder
org.elasticsearch.search.aggregations.bucket.terms.TermsBuilder更名为
org.elasticsearch.search.aggregations.bucket.terms.TermsAggregationBuilder
org.elasticsearch.search.aggregations.bucket.range.date.DateRangeBuilder更名为
org.elasticsearch.search.aggregations.bucket.range.date.DateRangeAggregationBuilder
org.elasticsearch.search.aggregations.metrics.tophits.TopHitsBuilder更名为
org.elasticsearch.search.aggregations.metrics.tophits.TopHitsAggregationBuilder
org.elasticsearch.search.SearchHit#isSourceEmpty方法改为org.elasticsearch.search.SearchHit#hasSource方法,反向替换。
16.DeleteByQueryResponseorg.elasticsearch.action.deletebyquery.DeleteByQueryResponse已经弃用,
调整关键字等结构性问题 1. String数据类型弃用在 ES2.x 版本字符串数据是没有 keyword 和 text 类型的,只有string类型,ES更新到5版本后,取消了 string 数据类型,代替它的是 keyword 和 text 数据类型。区别在于:
text类型定义的文本会被分析,在建立索引前会将这些文本进行分词,转化为词的组合,建立索引。允许 ES来检索这些词语。text 数据类型不能用来排序和聚合。
keyWord类型表示精确查找的文本,不需要进行分词。可以被用来检索过滤、排序和聚合。keyword 类型字段只能用本身来进行检索。
在没有显性定义时,es默认为“text”类型。
2. multi_field关键字弃用相关mapping方式改为:
#对需要设置的字段,在"type"属性后增加"fields": #其中的"raw"为自定义的名称,想象它是city的一个分身。 PUT /my_index { "mappings": { "my_type": { "properties": { "city": { "type": "text", "fields": { "raw": { "type": "keyword" } } } } } } } 查询raw字段时,使用city.raw表示3. analyzer 1.改版后,设置了search_analyzer的情况下,analyzer也要设置,否则会报:
analyzer on field [name] must be set when search_analyzer is set。2.改版后,index_analyzer设置被弃用,如果设置,会报
MapperParsingException[Mapping definition for [fields] has unsupported parameters: [index_analyzer : ik_max_word]];
这里扩展一下,在原来的版本中,index_analyzer负责建立索引时的分词器定义,search_analyzer负责搜索时的分词器定义。
索引期间查找解析器的完整顺序是这样的:
定义在字段映射中的index_analyzer
定义在字段映射中的analyzer
定义在文档_analyzer字段中的解析器
type的默认index_analyzer
type的默认analyzer
索引设置中default_index对应的解析器
索引设置中default对应的解析器
节点上default_index对应的解析器
节点上default对应的解析器
standard解析器
而查询期间的完整顺序则是:
直接定义在查询中的analyzer
定义在字段映射中的search_analyzer
定义在字段映射中的analyzer
type的默认search_analyzer
type的默认analyzer
索引设置中的default_search对应的解析器
索引设置中的default对应的解析器
节点上default_search对应的解析器
节点上default对应的解析器
standard解析器
现在新版删除index_analyzer,具体功能由analyzer关键字承担,analyzer关键字生效与index时和search时(除非search_analyzer已经被显性定义)。
3. _timestamp在2.0弃用_timestamp官方建议自定义一个字段,自己赋值用来表示时间戳。
4. 嵌套字段排序时字段名称调整对于如下的数据:
PUT /my_index/blogpost/2 { "title": "Investment secrets", "body": "What they don"t tell you ...", "tags": [ "shares", "equities" ], "comments": [ { "name": "Mary Brown", "comment": "Lies, lies, lies", "age": 42, "stars": 1, "date": "2014-10-18" }, { "name": "John Smith", "comment": "You"re making it up!", "age": 28, "stars": 2, "date": "2014-10-16" } ] }
老版本中,对stars字段进行排序时,直接可以
"sort" : [ { "stars" : { "order" : "desc", "mode" : "min", "nested_path" : "comments" } ]
但在新版中,上述报文会报
No mapping found for [stars] in order to sort on
需要改成:
"sort" : [ { "comments.stars" : { "order" : "desc", "mode" : "min" } ]5. _script脚本参数名变更
老版中,_script可以这样定义
"sort" : [ { "_script" : { "script" : { "inline" : "paramsMap.containsKey(doc["id"].value) ? params.paramsMap.get(doc["id"].value) : params.paramsMap.get("other")", "lang" : "painless", "params" : { "paramsMap" : { "1" : 1, "2" : 1, "3" : 2, "other" : 3 } } }, "type" : "number", "order" : "asc" } } ]
新版中,对于params的参数paramsMap必须用params.paramsMap
"sort" : [ { "_script" : { "script" : { "inline" : "params.paramsMap.containsKey(doc["productCategory"].value) ? params.paramsMap.get(doc["productCategory"].value) : params.paramsMap.get("other")", "lang" : "painless", "params" : { "paramsMap" : { "901" : 1, "902" : 1, "701" : 2, "other" : 3 } } }, "type" : "number", "order" : "asc" } } ]
注意:es 5.2.0默认禁用了动态语言,所以lang为painless之外的语言,默认情况下会报
ScriptException[scripts of type [inline], operation [update] and lang [groovy] are disabled];
需要在yml文件中添加配置(如groovy):
script.engine.groovy.inline:true script.engine.groovy.stored.search:true script.engine.groovy.stored.aggs:true6 .获取特定字段返回
在旧版本中,获取特定文档特定字段返回,可以使用stored_fields:
{ "from" : 0, "size" : 1, "query" : {}, "stored_fields" : "timestamp", "sort" : [ { "timestamp" : { "order" : "desc" } } ] }
新版本中,引入了更为强大的_source过滤器
{ "from" : 0, "size" : 1, "query" : {}, "_source" : "timestamp", "sort" : [ { "timestamp" : { "order" : "desc" } } ] }
或者
{ "from" : 0, "size" : 1, "query" : {}, "_source" : { "includes" : [ "timestamp" ], "excludes" : [ "" ] }, "sort" : [ { "timestamp" : { "order" : "desc" } } ] }
java的api主要调用SearchRequestBuilder的setFetchSource方法
7. date字段的format定义改版后,date字段最好再mapping时定义好format信息,以防止在请求前后因为格式转换问题报错:
ElasticsearchParseException[failed to parse date field [Thu Jun 18 00:00:00 CST 2015] with format [strict_date_optional_time||epoch_millis]]; nested: IllegalArgumentException[Parse failure at index [0] of [Thu Jun 18 00:00:00 CST 2015]]; }
[strict_date_optional_time||epoch_millis]是es默认的date字段解析格式
8. UncategorizedExecutionException改版前,transport client发送数据之前将java代码中的字段序列化成了json然后进行传输和请求,而在5.x以后,es改用使用的内部的transport protocol,这时候,如果定义一个比如bigDecimal类型,es不支持bigDecimal,数据类型不匹配会抛错误。
UncategorizedExecutionException[Failed execution]; nested: IOException[can not write type [class java.math.BigDecimal]];
es支持的格式如下
static { Map, Writer> writers = new HashMap<>(); writers.put(String.class, (o, v) -> { o.writeByte((byte) 0); o.writeString((String) v); }); writers.put(Integer.class, (o, v) -> { o.writeByte((byte) 1); o.writeInt((Integer) v); }); writers.put(Long.class, (o, v) -> { o.writeByte((byte) 2); o.writeLong((Long) v); }); writers.put(Float.class, (o, v) -> { o.writeByte((byte) 3); o.writeFloat((float) v); }); writers.put(Double.class, (o, v) -> { o.writeByte((byte) 4); o.writeDouble((double) v); }); writers.put(Boolean.class, (o, v) -> { o.writeByte((byte) 5); o.writeBoolean((boolean) v); }); writers.put(byte[].class, (o, v) -> { o.writeByte((byte) 6); final byte[] bytes = (byte[]) v; o.writeVInt(bytes.length); o.writeBytes(bytes); }); writers.put(List.class, (o, v) -> { o.writeByte((byte) 7); final List list = (List) v; o.writeVInt(list.size()); for (Object item : list) { o.writeGenericValue(item); } }); writers.put(Object[].class, (o, v) -> { o.writeByte((byte) 8); final Object[] list = (Object[]) v; o.writeVInt(list.length); for (Object item : list) { o.writeGenericValue(item); } }); writers.put(Map.class, (o, v) -> { if (v instanceof LinkedHashMap) { o.writeByte((byte) 9); } else { o.writeByte((byte) 10); } @SuppressWarnings("unchecked") final Map map = (Map ) v; o.writeVInt(map.size()); for (Map.Entry entry : map.entrySet()) { o.writeString(entry.getKey()); o.writeGenericValue(entry.getValue()); } }); writers.put(Byte.class, (o, v) -> { o.writeByte((byte) 11); o.writeByte((Byte) v); }); writers.put(Date.class, (o, v) -> { o.writeByte((byte) 12); o.writeLong(((Date) v).getTime()); }); writers.put(ReadableInstant.class, (o, v) -> { o.writeByte((byte) 13); final ReadableInstant instant = (ReadableInstant) v; o.writeString(instant.getZone().getID()); o.writeLong(instant.getMillis()); }); writers.put(BytesReference.class, (o, v) -> { o.writeByte((byte) 14); o.writeBytesReference((BytesReference) v); }); writers.put(Text.class, (o, v) -> { o.writeByte((byte) 15); o.writeText((Text) v); }); writers.put(Short.class, (o, v) -> { o.writeByte((byte) 16); o.writeShort((Short) v); }); writers.put(int[].class, (o, v) -> { o.writeByte((byte) 17); o.writeIntArray((int[]) v); }); writers.put(long[].class, (o, v) -> { o.writeByte((byte) 18); o.writeLongArray((long[]) v); }); writers.put(float[].class, (o, v) -> { o.writeByte((byte) 19); o.writeFloatArray((float[]) v); }); writers.put(double[].class, (o, v) -> { o.writeByte((byte) 20); o.writeDoubleArray((double[]) v); }); writers.put(BytesRef.class, (o, v) -> { o.writeByte((byte) 21); o.writeBytesRef((BytesRef) v); }); writers.put(GeoPoint.class, (o, v) -> { o.writeByte((byte) 22); o.writeGeoPoint((GeoPoint) v); }); WRITERS = Collections.unmodifiableMap(writers); }
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/76587.html
摘要:当时自己在本地测试搭建集群后,给分配了另外一个任务就是去了解中的自带分词英文分词中文分词的相同与差异以及自己建立分词需要注意的点。还有就是官网的文档了,非常非常详细,还有,版本的是有中文的官方文档,可以凑合着看。 前提 人工智能、大数据快速发展的今天,对于 TB 甚至 PB 级大数据的快速检索已然成为刚需,大型企业早已淹没在系统生成的浩瀚数据流当中。大数据技术业已集中在如何存储和处理这...
阅读 2873·2021-11-23 09:51
阅读 3390·2021-11-22 09:34
阅读 3270·2021-10-27 14:14
阅读 1474·2019-08-30 15:55
阅读 3329·2019-08-30 15:54
阅读 1047·2019-08-30 15:52
阅读 1864·2019-08-30 12:46
阅读 2828·2019-08-29 16:11