资讯专栏INFORMATION COLUMN

局部性原理——各类优化的基石

MadPecker / 1576人阅读

摘要:基于局部性原理,计算机处理器在设计时做了各种优化,比如现代的多级分支预测有良好局部性的程序比局部性差的程序运行得更快。目前计算机设计中,都是以块页为单位管理调度存储,其实就是在利用空间局部性来优化性能。

  学过计算机底层原理、了解过很多架构设计或者是做过优化的同学,应该很熟悉局部性原理。即便是非计算机行业的人,在做各种调优、提效时也不得不考虑到局部性,只不过他们不常用局部性一词。如果抽象程度再高一些,甚至可以说地球、生命、万事万物都是局部性的产物,因为这些都是宇宙中熵分布布局、局部的熵低导致的,如果宇宙中处处熵一致,有的只有一篇混沌。  
  所以什么是 局部性 ?这是一个常用的计算机术语,是指处理器在访问某些数据时短时间内存在重复访问,某些数据或者位置访问的概率极大,大多数时间只访问_局部_的数据。基于局部性原理,计算机处理器在设计时做了各种优化,比如现代CPU的多级Cache、分支预测…… 有良好局部性的程序比局部性差的程序运行得更快。虽然局部性一词源于计算机设计,但在当今分布式系统、互联网技术里也不乏局部性,比如像用redis这种memcache来减轻后端的压力,CDN做素材分发减少带宽占用率……
  局部性的本质是什么?其实就是概率的不均等,这个宇宙中,很多东西都不是平均分布的,平均分布是概率论中几何分布的一种特殊形式,非常简单,但世界就是没这么简单。我们更长听到的发布叫做高斯发布,同时也被称为正态分布,因为它就是正常状态下的概率发布,起概率图如下,但这个也不是今天要说的。

  其实有很多情况,很多事物有很强的头部集中现象,可以用概率论中的泊松分布来刻画,这就是局部性在概率学中的刻画形式。


  上面分别是泊松分布的示意图和概率计算公式,$lambda$ 表示单位时间(或单位面积)内随机事件的平均发生次数,$e$表示自然常数2.71828..,k表示事件发生的次数。要注意在刻画局部性时$lambda$表示不命中高频数据的频度,$lambda$越小,头部集中现象越明显。

局部性分类

  局部性有两种基本的分类, 时间局部性空间局部性 ,按Wikipedia的资料,可以分为以下五类,其实有些就是时间局部性和空间局部性的特殊情况。

时间局部性(Temporal locality):

  如果某个信息这次被访问,那它有可能在不久的未来被多次访问。时间局部性是空间局部性访问地址一样时的一种特殊情况。这种情况下,可以把常用的数据加cache来优化访存。

空间局部性(Spatial locality):

  如果某个位置的信息被访问,那和它相邻的信息也很有可能被访问到。 这个也很好理解,我们大部分情况下代码都是顺序执行,数据也是顺序访问的。

内存局部性(Memory locality):

访问内存时,大概率会访问连续的块,而不是单一的内存地址,其实就是空间局部性在内存上的体现。目前计算机设计中,都是以块/页为单位管理调度存储,其实就是在利用空间局部性来优化性能。

分支局部性(Branch locality)

  这个又被称为顺序局部性,计算机中大部分指令是顺序执行,顺序执行和非顺序执行的比例大致是5:1,即便有if这种选择分支,其实大多数情况下某个分支都是被大概率选中的,于是就有了CPU的分支预测优化。

等距局部性(Equidistant locality)

  等距局部性是指如果某个位置被访问,那和它相邻等距离的连续地址极有可能会被访问到,它位于空间局部性和分支局部性之间。 举个例子,比如多个相同格式的数据数组,你只取其中每个数据的一部分字段,那么他们可能在内存中地址距离是等距的,这个可以通过简单的线性预测就预测是未来访问的位置。

实际应用

  计算机领域关于局部性非常多的利用,有很多你每天都会用到,但可能并没有察觉,另外一些可能离你会稍微远一些,接下来我们举几个例子来深入了解下局部性的应用。

计算机存储层级结构


  上图来自极客时间徐文浩的《深入浅出计算机组成原理》,我们以目前常见的普通家用电脑为例 ,分别说下上图各级存储的大小和访问速度,数据来源于https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html。

  从最快的L1 Cache到最慢的HDD,其两者的访存时间差距达到了6个数量级,即便是和内存比较,也有几百倍的差距。举个例子,如果CPU在运算是直接从内存中读取指令和数据,执行一条指令0.3ns,然后从内存读下一条指令,等120ns,这样CPU 99%计算时间都会被浪费掉。但就是因为有局部性的存在,每一层都只有少部分数据会被频繁访问,我们可以把这部分数据从底层存储挪到高层存储,可以降低大部分的数据读取时间。
  
  可能有些人好奇,为什么不把L1 缓存做的大点,像内存那么大,直接替代掉内存,不是性能更好吗?虽然是这样,但是L1 Cache单位价格要比内存单位的价格贵好多(大概差200倍),有兴趣可以了解下DRAM和SRAM。
  我们可以通过编写高速缓存友好的代码逻辑来提升我们的代码性能,有两个基本方法 。

让最常见的情况运行的快,程序大部分的运行实际都花在少了核心函数上,而这些函数把大部分时间都花在少量循环上,把注意力放在这些代码上。

让每个循环内缓存不命中率最小。比如尽量不要列遍历二维数组。

MemCache


  MemCache在大型网站架构中经常看到。DB一般公司都会用mysql,即便是做了分库分表,数据数据库单机的压力还是非常大的,这时候因为局部性的存在,可能很多数据会被频繁访问,这些数据就可以被cache到像redis这种memcache中,当redis查不到数据,再去查db,并写入redis。
  因为redis的水平扩展能力和简单查询能力要比mysql强多了,查起来也快。所以这种架构设计有几个好处:

加快了数据查询的平均速度。

大幅度减少DB的压力。

CDN

  CDN的全称是Content Delivery Network,即内容分发网络(图片来自百度百科) 。CDN常用于大的素材下发,比如图片和视频,你在淘宝上打开一个图片,这个图片其实会就近从CDN机房拉去数据,而不是到阿里的机房拉数据,可以减少阿里机房的出口带宽占用,也可以减少用户加载素材的等待时间。

  CDN在互联网中被大规模使用,像视频、直播网站,电商网站,甚至是12306都在使用,这种设计对公司可以节省带宽成本,对用户可以减少素材加载时间,提升用户体验。看到这,有没有发现,CDN的逻辑和Memcache的使用很类似,你可以直接当他是一个互联网版的cache优化。

Java JIT

  JIT全称是Just-in-time Compiler,中文名为即时编译器,是一种Java运行时的优化。Java的运行方式和C++不太一样,因为为了实现write once, run anywhere的跨平台需求,Java实现了一套字节码机制,所有的平台都可以执行同样的字节码,执行时有该平台的JVM将字节码实时翻译成该平台的机器码再执行。问题在于字节码每次执行都要翻译一次,会很耗时。

  图片来自郑雨迪Introduction to Graal ,Java 7引入了tiered compilation的概念,综合了C1的高启动性能及C2的高峰值性能。这两个JIT compiler以及interpreter将HotSpot的执行方式划分为五个级别:

level 0:interpreter解释执行

level 1:C1编译,无profiling

level 2:C1编译,仅方法及循环back-edge执行次数的profiling

level 3:C1编译,除level 2中的profiling外还包括branch(针对分支跳转字节码)及receiver type(针对成员方法调用或类检测,如checkcast,instnaceof,aastore字节码)的profiling

level 4:C2编译

  通常情况下,一个方法先被解释执行(level 0),然后被C1编译(level 3),再然后被得到profile数据的C2编译(level 4)。如果编译对象非常简单,虚拟机认为通过C1编译或通过C2编译并无区别,便会直接由C1编译且不插入profiling代码(level 1)。在C1忙碌的情况下,interpreter会触发profiling,而后方法会直接被C2编译;在C2忙碌的情况下,方法则会先由C1编译并保持较少的profiling(level 2),以获取较高的执行效率(与3级相比高30%)。
  这里将少部分字节码实时编译成机器码的方式,可以提升java的运行效率。可能有人会问,为什么不预先将所有的字节码编译成机器码,执行的时候不是更快更省事吗?首先机器码是和平台强相关的,linux和unix就可能有很大的不同,何况是windows,预编译会让java失去夸平台这种优势。 其次,即时编译可以让jvm拿到更多的运行时数据,根据这些数据可以对字节码做更深层次的优化,这些是C++这种预编译语言做不到的,所以有时候你写出的java代码执行效率会比C++的高。

CopyOnWrite

  CopyOnWrite写时复制,最早应该是源自linux系统,linux中在调用fork() 生成子进程时,子进程应该拥有和父进程一样的指令和数据,可能子进程会修改一些数据,为了避免污染父进程的数据,所以要给子进程多带带拷贝一份。出于效率考虑,fork时并不会直接复制,而是等到子进程的各段数据需要写入才会复制一份给子进程,故此得名 写时复制
  在计算机的世界里,读写的分布也是有很大的局部性的,大多数情况下读远大于写, 写时复制 的方式,可以减少大量不必要的复制,提升性能。 另外这种方式也不仅仅是用在linux内核中,java的concurrent包中也提供了CopyOnWriteArrayList CopyOnWriteArraySet。像Spark中的RDD也是用CopyOnWrite来减少不必要的RDD生成。
  

处理

  上面列举了那么多局部性的应用,其实还有很多很多,我只是列举出了几个我所熟知的应用,虽然上面这些例子,我们都利用局部性得到了能效、成本上的提升。但有些时候它也会给我们带来一些不好的体验,更多的时候它其实就是一把双刃剑,我们如何识别局部性,利用它好的一面,避免它坏的一面?

识别

  文章开头也说过,局部性其实就是一种概率的不均等性,所以只要概率不均等就一定存在局部性,因为很多时候这种概率不均太明显了,非常好识别出来,然后我们对大头做相应的优化就行了。但可能有些时候这种概率不均需要做很详细的计算才能发现,最后还得核对成本才能考虑是否值得去做,这种需要具体问题具体分析了。    
  如何识别局部性,很简单,看概率分布曲线,只要不是一条水平的直线,就一定存在局部性。  

利用

  发现局部性之后对我们而言是如何利用好这些局部性,用得好提升性能、节约资源,用不好局部性就会变成阻碍。而且不光是在计算机领域,局部性在非计算机领域也可以利用。
##### 性能优化
  上面列举到的很多应用其实就是通过局部性做一些优化,虽然这些都是别人已经做好的,但是我们也可以参考其设计思路。
  恰巧最近我也在做我们一个java服务的性能优化,利用jstack、jmap这些java自带的分析工具,找出其中最吃cpu的线程,找出最占内存的对象。我发现有个redis数据查询有问题,因为每次需要将一个大字符串解析很多个键值对,中间会产生上千个临时字符串,还需要将字符串parse成long和double。redis数据太多,不可能完全放的内存里,但是这里的key有明显的局部性,大量的查询只会集中在头部的一些key上,我用一个LRU Cache缓存头部数据的解析结果,就可以减少大量的查redis+解析字符串的过程了。
  另外也发现有个代码逻辑,每次请求会被重复执行几千次,耗费大量cpu,这种热点代码,简单几行改动减少了不必要的调用,最终减少了近50%的CPU使用。
  

非计算机领域

  《高能人士的七个习惯》里提到了一种工作方式,将任务划分为重要紧急、不重要但紧急、重要但不紧急、不重要不紧急四种,这种划分方式其实就是按单位时间的重要度排序的,按单位时间的重要度越高收益越大。《The Effective Engineer》里直接用leverage(杠杆率)来衡量每个任务的重要性。这两种方法差不多是类似的,都是优先做高收益率的事情,可以明显提升你的工作效率。
  这就是工作中收益率的局部性导致的,只要少数事情有比较大的收益,才值得去做。还有一个很著名的法则__82法则__,在很多行业、很多领域都可以套用,_80%的xxx来源于20%的xxx_ ,80%的工作收益来源于20%的工作任务,局部性给我们的启示“永远关注最重要的20%” 。

避免

  上面我们一直在讲如何通过局部性来提升性能,但有时候我们需要避免局部性的产生。 比如在大数据运算时,时常会遇到数据倾斜、数据热点的问题,这就是数据分布的局部性导致的,数据倾斜往往会导致我们的数据计算任务耗时非常长,数据热点会导致某些单节点成为整个集群的性能瓶颈,但大部分节点却很闲,这些都是我们需要极力避免的。
  一般我们解决热点和数据切斜的方式都是提供过重新hash打乱整个数据让数据达到均匀分布,当然有些业务逻辑可能不会让你随意打乱数据,这时候就得具体问题具体分析了。感觉在大数据领域,局部性极力避免,当然如果没法避免你就得通过其他方式来解决了,比如HDFS中小文件单节点读的热点,可以通过减少加副本缓解。其本质上没有避免局部性,只增加资源缓解热点了,据说微博为应对明星出轨Redis集群也是采取这种加资源的方式。
 

参考资料

维基百科局部性原理

《计算机组成与设计》 David A.Patterson / John L.Hennessy

《深入浅出计算机组成原理》 极客时间 徐文浩

《深入理解计算机系统》 Randal E.Bryant / David O"Hallaron 龚奕利 / 雷迎春(译)

Interactive latencies

Introduction to Graal 郑雨迪

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/75932.html

相关文章

  • 阿里云 APM 解决方案地图

    摘要:阿里云上领域各个产品最终目标是为了对以上各个组件进行有效监控。阿里云的解决方案地图基于今天的云上的应用架构,阿里云的解决方案地图如下所示。其他阿里云服务包括缓存,等。阿里云解决方案地图以下表格对阿里云解决方案进行总结。 摘要: PM是近5年来伴随着云技术、微服务架构发展起来的一个新兴监控领域。在国内外,无论是云厂商(如AWS, Azure,等)还是独立的公司(Dynatrace, Ap...

    tainzhi 评论0 收藏0
  • Java虚拟机 :Java字节码编译生成和运行优化

    摘要:字节码生成把语法树定义的抽象的语法结构按照二进制字节码的规则排布成字节码,最终我们可以看到满足虚拟机运行要求的二进制字节码被转换出来。上面的过程完成后,命令扮演的编译器就将源代码转成了结构化的二进制字节码。 这篇文章的素材来自周志明的《深入理解Java虚拟机》。 作为Java开发人员,一定程度了解JVM虚拟机的的运作方式非常重要,本文就一些简单的虚拟机的相关概念和运作机制展开我自己的学...

    Hwg 评论0 收藏0
  • 微服务架构:引领数字化转型基石

    摘要:然而,敏锐的已经意识到,德邦快递率先引入的微服务架构,正在成为企业数字化转型升级战略成功的基石,成为企业引领行业创新的秘密武器。 2018年双11,中国网民释放出来超过2000亿元的购买力,给快递公司带来了新的一轮考验。刚刚从大件快递切入快递市场的德邦快递,却无惊无险地完成了客户的托付。信任德邦快递的店主和买家并不知道,在这战绩背后,德邦快递投入了每年5亿元的数字化建设成本,并采用了先...

    wayneli 评论0 收藏0
  • Java编译期优化思维导图

    摘要:本文参考自来自周志明深入理解虚拟机第版,拓展内容建议读者可以阅读下这本书。和构造方法一一对应,是同一概念在两个级别的含义收敛的操作自动保证执行父类的执行语句块初始化类变量字符串加操作替换为或的操作 showImg(https://segmentfault.com/img/remote/1460000016240419?w=3876&h=3614); 本文参考自来自周志明《深入理解Jav...

    sorra 评论0 收藏0
  • 谈谈Python协程技术演进

    摘要:事件循环是异步编程的底层基石。对事件集合进行轮询,调用回调函数等一轮事件循环结束,循环往复。协程直接利用代码的执行位置来表示状态,而回调则是维护了一堆数据结构来处理状态。时代的协程技术主要是,另一个比较小众。 Coding Crush Python开发工程师 主要负责岂安科技业务风险情报系统redq。 引言 1.1. 存储器山 存储器山是 Randal Bryant 在《深入...

    zhiwei 评论0 收藏0

发表评论

0条评论

MadPecker

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<