摘要:之前中提过,并发的时候,可能造成死循环,那么在多线程中可以用来避免这一情况。默认,当容量大于时,开始扩容并发数,默认,直接影响和的值,以及的初始化数量。初始化的数量,为最接近且大于的办等于的次方的值,比如,数量为,,数量为。
之前HashMap中提过,并发的时候,可能造成死循环,那么在多线程中可以用ConcurrentHashMap来避免这一情况。
SegmentConcurrentHashMap是由多个Segment组成的,Segment继承了ReentrantLock,每次加锁都是对某个Segment,不会影响其他Segment,达到了锁分离(也叫分段锁)的作用。
每个Segment又包含了HashEntry数组,HashEntry是一个链表。如下图所示:
initialCapacity:初始容量大小,默认16。
loadFactor:扩容因子,table扩容使用,Segments不扩容。默认0.75,当Segment容量大于initialCapacity*loadFactor时,开始扩容
concurrencyLevel:并发数,默认16,直接影响segmentShift和segmentMask的值,以及Segment的初始化数量。Segment初始化的数量,为最接近且大于的办等于2的N次方的值,比如concurrencyLevel=16,Segment数量为16,concurrencyLevel=17,Segment数量为32。segmentShift的值是这样的,比如Segment是32,相对于2的5次方,那么他的值就是32-5,为27,后面无符号右移27位,也就是取高5位的时候,就是0到31的值,此时Segment的下标也是0到31,取模后对应着每个Segment。segmentMask就是2的n次方-1,这边n是5,用于取模。之前在hashmap的indexFor方法有提过。
初始化的时候,还要初始化第一个Segment,以及Segment中table数组的大小,这边大小是大于等于initialCapacity除以Segment数组的个数,平均分配,最小是2,且是2的N次方。比如initialCapacity是32,concurrencyLevel是16的时候,那么Segment的个数也是16,32除以16,等于2,如果initialCapacity是33,Segment是16,33除以16,取4。
public ConcurrentHashMap() { this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL); } public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); if (concurrencyLevel > MAX_SEGMENTS) concurrencyLevel = MAX_SEGMENTS; // Find power-of-two sizes best matching arguments int sshift = 0; int ssize = 1; while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; } this.segmentShift = 32 - sshift;//用于高位,判断落在哪个Segment this.segmentMask = ssize - 1;//用于取模。之前在hashmap的indexFor方法有提过。2的n次方-1 if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; int c = initialCapacity / ssize; if (c * ssize < initialCapacity) ++c; int cap = MIN_SEGMENT_TABLE_CAPACITY; while (cap < c) cap <<= 1; // create segments and segments[0] Segmentput方法s0 = new Segment (loadFactor, (int)(cap * loadFactor), (HashEntry [])new HashEntry[cap]);//初始化第一个位置的Segment Segment [] ss = (Segment [])new Segment[ssize];//初始化Segments UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0] this.segments = ss; }
public V put(K key, V value) { Segments; if (value == null) throw new NullPointerException(); int hash = hash(key); //无符号右移后取模,落在哪个Segment上面 int j = (hash >>> segmentShift) & segmentMask; if ((s = (Segment )UNSAFE.getObject // nonvolatile; recheck (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment s = ensureSegment(j); return s.put(key, hash, value, false); }
ensureSegment方法
确定落在哪个Segment上,如果为空,就初始化,因为之前就初始化第一个Segment
private SegmentensureSegment(int k) { final Segment [] ss = this.segments; long u = (k << SSHIFT) + SBASE; // raw offset Segment seg; if ((seg = (Segment )UNSAFE.getObjectVolatile(ss, u)) == null) { //使用segment[0]的table长度和loadFactor来初始化 Segment proto = ss[0]; // use segment 0 as prototype int cap = proto.table.length; float lf = proto.loadFactor; int threshold = (int)(cap * lf); HashEntry [] tab = (HashEntry [])new HashEntry[cap]; if ((seg = (Segment )UNSAFE.getObjectVolatile(ss, u)) == null) { // recheck Segment s = new Segment (lf, threshold, tab); while ((seg = (Segment )UNSAFE.getObjectVolatile(ss, u))//cas操作,只能一个设值成功,如果其他成功了,就赋值,并返回 == null) { if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s)) break; } } } return seg; }
put方法
final V put(K key, int hash, V value, boolean onlyIfAbsent) { HashEntrynode = tryLock() ? null : scanAndLockForPut(key, hash, value);//获取Segment的锁 V oldValue; try { HashEntry [] tab = table; int index = (tab.length - 1) & hash;//上面是获取Segment取高位的hash,这边是tabel的hash, HashEntry first = entryAt(tab, index);//取到hash位置的数组的表头 for (HashEntry e = first;;) {//从头结点遍历 if (e != null) { K k; if ((k = e.key) == key || (e.hash == hash && key.equals(k))) {//key相同,或者hash值一样 oldValue = e.value; if (!onlyIfAbsent) {//是否替换 e.value = value; ++modCount; } break; } e = e.next; } else { if (node != null)//不为空,设置为表头 node.setNext(first); else node = new HashEntry (hash, key, value, first);/初始化后放表头 int c = count + 1; if (c > threshold && tab.length < MAXIMUM_CAPACITY) rehash(node);// 扩容 else setEntryAt(tab, index, node);//把新的节点放在tab的index上面 ++modCount; count = c; oldValue = null; break; } } } finally { unlock();//释放锁 } return oldValue; }
scanAndLockForPut方法
尝试获取锁,没获取到先初始化node
private HashEntryscanAndLockForPut(K key, int hash, V value) { HashEntry first = entryForHash(this, hash);//获取hash后的头结点,有存在null的情况 HashEntry e = first; HashEntry node = null; int retries = -1; // negative while locating node while (!tryLock()) {//这个put方法先尝试获取,获取不到,这边while循环尝试获取 HashEntry f; // to recheck first below if (retries < 0) { if (e == null) {//结点为空的时候 if (node == null) // speculatively create node node = new HashEntry (hash, key, value, null);//初始化node retries = 0; } else if (key.equals(e.key))//头结点不为空的时候 retries = 0; else e = e.next; } else if (++retries > MAX_SCAN_RETRIES) {//超过重试次数,直接进入阻塞队列等待锁 lock(); break; } else if ((retries & 1) == 0 && (f = entryForHash(this, hash)) != first) {//不等于first,就是已经有其他节点进入 e = first = f; // re-traverse if entry changed retries = -1; } } return node; }
rehash方法,扩容,对table扩容
private void rehash(HashEntryget方法node) { HashEntry [] oldTable = table; int oldCapacity = oldTable.length; int newCapacity = oldCapacity << 1;//左移,之前的2倍 threshold = (int)(newCapacity * loadFactor); HashEntry [] newTable = (HashEntry []) new HashEntry[newCapacity]; int sizeMask = newCapacity - 1; for (int i = 0; i < oldCapacity ; i++) { HashEntry e = oldTable[i]; if (e != null) { HashEntry next = e.next; int idx = e.hash & sizeMask; if (next == null) // 为空,没有后面的节点,直接给新数组 newTable[idx] = e; else { // Reuse consecutive sequence at same slot HashEntry lastRun = e; int lastIdx = idx; //因为数组是2倍的扩容,所以重新hash后,要么落在跟之前索引一样的位置,要么就是加上oldCapacity 的值, //比如容量是2,扩容4,现在hash是2,4,6,10,14那么后面3个都是除4余2,可以直接复制 for (HashEntry last = next; last != null; last = last.next) { int k = last.hash & sizeMask; if (k != lastIdx) {//hash不一样,重新 lastIdx = k; lastRun = last; } } //执行上面,就是lastRun是6,10,14 newTable[lastIdx] = lastRun;//上面 // Clone remaining nodes克隆的时候,碰到lastrun,直接根据所以给值,但是前面有可能的索引跟lastrun一样,比如2 for (HashEntry p = e; p != lastRun; p = p.next) { V v = p.value; int h = p.hash; int k = h & sizeMask; HashEntry n = newTable[k]; newTable[k] = new HashEntry (h, p.key, v, n); } } } } int nodeIndex = node.hash & sizeMask; // add the new node node.setNext(newTable[nodeIndex]);//加入到头结点 newTable[nodeIndex] = node; table = newTable; }
public V get(Object key) { Segments; // manually integrate access methods to reduce overhead HashEntry [] tab; int h = hash(key); long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; if ((s = (Segment )UNSAFE.getObjectVolatile(segments, u)) != null &&//找到Segment,逻辑同put (tab = s.table) != null) { for (HashEntry e = (HashEntry ) UNSAFE.getObjectVolatile (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);//找到table,逻辑同put e != null; e = e.next) {//遍历table K k; if ((k = e.key) == key || (e.hash == h && key.equals(k))) return e.value; } } return null; }
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/75648.html
摘要:底层的数据结构就是数组链表红黑树,红黑树是在中加进来的。负载因子哈希表中的填满程度。 前言 把 Java 容器的学习笔记放到 github 里了,还在更新~其他的目前不打算抽出来作为文章写,感觉挖的还不够深,等对某些东西理解的更深了再写文章吧Java 容器目录如下: Java 容器 一、概述 二、源码学习 1. Map 1.1 HashMap 1.2 LinkedHashM...
摘要:若遇到哈希冲突,则将冲突的值加到链表中即可。之后相比于之前的版本,之后在解决哈希冲突时有了较大的变化,当链表长度大于阈值默认为时,将链表转化为红黑树,以减少搜索时间。有序,唯一红黑树自平衡的排序二叉树。 本文是最最最常见Java面试题总结系列第三周的文章。主要内容: Arraylist 与 LinkedList 异同 ArrayList 与 Vector 区别 HashMap的底层...
摘要:线程安全问题在并发编程学习之基础概念提到,多线程的劣势之一,有个线程安全问题,现在看看下面的例子。那么,该怎么解决呢,很简单,在方法前加个同步锁。运行结果如下有两种情况,是因为看谁先抢占锁,但是输出的算法结果是正确的。 线程安全问题 在java并发编程学习之基础概念提到,多线程的劣势之一,有个线程安全问题,现在看看下面的例子。 public class NotSafeDemo { ...
摘要:在并发编程学习之显示锁里有提过公平锁和非公平锁,我们知道他的使用方式,以及非公平锁的性能较高,在源码分析的基础上,我们看看和的区别在什么地方。而非公平锁直接尝试获取锁。 在java并发编程学习之显示锁Lock里有提过公平锁和非公平锁,我们知道他的使用方式,以及非公平锁的性能较高,在AQS源码分析的基础上,我们看看NonfairSync和FairSync的区别在什么地方。 lock方法 ...
摘要:在并发编程学习之三种线程启动方式中有提过。是否执行结束,包括正常执行结束或异常结束。获取返回值,没有得到返回值前一直阻塞。运行结果如下由于任务被取消,所以抛出异常。注意的是,此时线程还在跑,和返回的是。并不能让任务真正的结束。 FutureTask 在java并发编程学习之三种线程启动方式中有提过。主要的方法如下: cancel(boolean mayInterruptIfRunni...
阅读 869·2021-09-02 09:55
阅读 1495·2019-12-27 12:02
阅读 1683·2019-08-30 14:24
阅读 1137·2019-08-30 14:18
阅读 2749·2019-08-29 13:57
阅读 2192·2019-08-26 11:51
阅读 1363·2019-08-26 10:37
阅读 762·2019-08-23 16:09