摘要:原理全称,当线程去获取资源的时候,会根据状态值来判断是否有锁,如果有锁,则加入到链表,链表里的线程,通过自旋,判断资源是否已经释放,如果释放,则获取资源。
原理
全称AbstractQueuedSynchronizer,当线程去获取资源的时候,会根据状态值state来判断是否有锁,如果有锁,则加入到链表,链表里的线程,通过自旋,判断资源是否已经释放,如果释放,则获取资源。
AQS结构volatile Node head:阻塞的头节点
volatile Node tail:阻塞的尾节点,新的阻塞节点加到最后
volatile int state:锁的状态,0说明未占用,大于等于1说明已占用
Thread exclusiveOwnerThread:占用锁的当前线程
node:双向链表的节点信息Node EXCLUSIVE:独占模式
volatile Thread thread:当前线程
volatile Node prev:前置节点
volatile Node next:后置节点
volatile int waitStatus:状态字段,-1:等待被唤醒,大于0,被取消
源码分析这里以非公平锁为例
加锁 lock获取锁
final void lock() { if (compareAndSetState(0, 1))//如果状态是0,则设置为1 setExclusiveOwnerThread(Thread.currentThread());//设置占用锁为当前的线程 else acquire(1);//资源被占用 }acquire
锁被占用后,再尝试获取,获取不到,进入阻塞队列
public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); }tryAcquire:
调用的是Sync的nonfairTryAcquire方法。
final boolean nonfairTryAcquire(int acquires) { final Thread current = Thread.currentThread();//获取当前线程 int c = getState();//获取当前状态 if (c == 0) { if (compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) {//为当前线程,重入 int nextc = c + acquires; if (nextc < 0) // overflow throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; }addWaiter
把线程封装成node,加入队列
private Node addWaiter(Node mode) { Node node = new Node(Thread.currentThread(), mode); // Try the fast path of enq; backup to full enq on failure Node pred = tail;//获取尾节点 if (pred != null) { node.prev = pred;//当前节点的前置节点为获取到的尾节点 if (compareAndSetTail(pred, node)) {//设置当前节点为尾节点 pred.next = node;//如果cas操作成功,设置双向链表 return node; } } enq(node); return node; }enq
通过自旋的方式,加入到尾节点
private Node enq(final Node node) { for (;;) { Node t = tail;//获取尾节点 if (t == null) { // 如果尾节点为空,初始化头节点和尾节点,地址为同一个 if (compareAndSetHead(new Node())) tail = head; } else { node.prev = t; if (compareAndSetTail(t, node)) {//加入尾节点 t.next = node; return t; } } } }acquireQueued
final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { boolean interrupted = false; for (;;) { final Node p = node.predecessor();//获取前置节点 if (p == head && tryAcquire(arg)) {//如果前置节点是head,并且获取到了锁 setHead(node);//把当前节点设置到head上面 p.next = null; // help GC failed = false; return interrupted; } //如果既不是队头,或者没有抢过其他线程 if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())//如果队头是唤醒的状态,就用parkAndCheckInterrupt挂起 interrupted = true; } } finally { if (failed) cancelAcquire(node); } }shouldParkAfterFailedAcquire
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { int ws = pred.waitStatus; if (ws == Node.SIGNAL) /* * This node has already set status asking a release * to signal it, so it can safely park. */ return true;//唤醒,返回true if (ws > 0) { /* * Predecessor was cancelled. Skip over predecessors and * indicate retry. */ do { node.prev = pred = pred.prev;//如果被取消了,被取消的前置节点替换当前节点的前置节点 } while (pred.waitStatus > 0); pred.next = node;//双向链表 } else { /* * waitStatus must be 0 or PROPAGATE. Indicate that we * need a signal, but don"t park yet. Caller will need to * retry to make sure it cannot acquire before parking. */ compareAndSetWaitStatus(pred, ws, Node.SIGNAL);//前置节点状态设置为唤醒 } return false; }唤醒 unlock
public void unlock() { sync.release(1); }release
public final boolean release(int arg) { if (tryRelease(arg)) { Node h = head; if (h != null && h.waitStatus != 0) unparkSuccessor(h);//唤醒头节点 return true; } return false; }tryRelease
protected final boolean tryRelease(int releases) { int c = getState() - releases;//可能重入的情况 if (Thread.currentThread() != getExclusiveOwnerThread())//非当前线程抛异常 throw new IllegalMonitorStateException(); boolean free = false; if (c == 0) {//不用cas是因为仅有当前显示有锁 free = true; setExclusiveOwnerThread(null); } setState(c); return free; }
private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ int ws = node.waitStatus; if (ws < 0) compareAndSetWaitStatus(node, ws, 0);//如果头节点当前waitStatus<0, 修改为0 /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ Node s = node.next; //唤醒下一个节点,如果第一个为空,从尾部遍历上去,获取最前面的waitStatus 小于0的节点 if (s == null || s.waitStatus > 0) { s = null; for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } if (s != null) LockSupport.unpark(s.thread);//唤醒 }
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/75559.html
摘要:在并发编程学习之显示锁里有提过公平锁和非公平锁,我们知道他的使用方式,以及非公平锁的性能较高,在源码分析的基础上,我们看看和的区别在什么地方。而非公平锁直接尝试获取锁。 在java并发编程学习之显示锁Lock里有提过公平锁和非公平锁,我们知道他的使用方式,以及非公平锁的性能较高,在AQS源码分析的基础上,我们看看NonfairSync和FairSync的区别在什么地方。 lock方法 ...
摘要:线程安全问题在并发编程学习之基础概念提到,多线程的劣势之一,有个线程安全问题,现在看看下面的例子。那么,该怎么解决呢,很简单,在方法前加个同步锁。运行结果如下有两种情况,是因为看谁先抢占锁,但是输出的算法结果是正确的。 线程安全问题 在java并发编程学习之基础概念提到,多线程的劣势之一,有个线程安全问题,现在看看下面的例子。 public class NotSafeDemo { ...
摘要:在并发编程学习之三种线程启动方式中有提过。是否执行结束,包括正常执行结束或异常结束。获取返回值,没有得到返回值前一直阻塞。运行结果如下由于任务被取消,所以抛出异常。注意的是,此时线程还在跑,和返回的是。并不能让任务真正的结束。 FutureTask 在java并发编程学习之三种线程启动方式中有提过。主要的方法如下: cancel(boolean mayInterruptIfRunni...
摘要:但是的语义不足以确保递增操作的原子性,在多线程的情况下,线程不一定是安全的。检查某个状态标记,以判断是否退出循环某个方法这边和用普通的变量的区别是,在多线程的情况下,取到后,的值被改变了,判断会不正确。 多线程为什么是不安全的 这边简单的讲述一下,参考java并发编程学习之synchronize(一) 当线程A和线程B同时进入num = num + value; 线程A会把num的值...
摘要:可以将视为,虽然实际上并不是这样实现的。这些值相对于使用改变量的线程存有的一份独立的副本。例子运行结果如下这里直接更改并发编程学习之一的例子,可以看到,的值不被线程共享。 用途 本地线程,通常用于防止对可变的单实例对象或全局变量进行共享,常见的比如数据库连接。可以将ThreadLocal视为Map,虽然实际上并不是这样实现的。也可以把事务上下文保存在ThreadLocal中,虽然方便处...
阅读 3186·2021-10-13 09:40
阅读 3620·2019-08-30 15:54
阅读 1295·2019-08-30 13:20
阅读 2959·2019-08-30 11:26
阅读 458·2019-08-29 11:33
阅读 1086·2019-08-26 14:00
阅读 2316·2019-08-26 13:58
阅读 3330·2019-08-26 10:39