摘要:而这个正是它是的内部类,同时继承自。获取最近的并依次执行其方法进入头部,并且最终更改了向注册了读事件参考文章总结如何接入新连接基本流程如上所述,如果有误,还望各位指正。
欢迎关注公众号:【爱编程】
如果有需要后台回复2019赠送1T的学习资料哦!!
前文再续,书接上一回【NioEventLoop】。
在研究NioEventLoop执行过程的时候,检测IO事件(包括新连接),处理IO事件,执行所有任务三个过程。其中检测IO事件中通过持有的selector去轮询事件,检测出新连接。这里复用同一段代码。
在开始分析前,先了解一下Channel的设计
顶层Channel接口定义了socket事件如读、写、连接、绑定等事件,并使用AbstractChannel作为骨架实现了这些方法。查看器成员变量,发现大多数通用的组件,都被定义在这里
第二层AbstractNioChannel定义了以NIO,即Selector的方式进行读写事件的监听。其成员变量保存了selector相关的一些属性。
第三层内容比较多,定义了服务端channel(左边继承了AbstractNioMessageChannel的NioServerSocketChannel)以及客户端channel(右边继承了AbstractNioByteChannel的NioSocketChannel)。
如何接入新连接?本文开始探索一下Netty是如何接入新连接?主要分为四个部分
1.检测新连接1.检测新连接
2.创建NioSocketChannel
3.分配线程和注册Selector
4.向Selector注册读事件
Netty服务端在启动的时候会绑定一个bossGroup,即NioEventLoop,在bind()绑定端口的时候注册accept(新连接接入)事件。扫描到该事件后,便处理。因此入口从:NioEventLoop#processSelectedKeys()开始。
private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) { final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe(); //省略代码 // Also check for readOps of 0 to workaround possible JDK bug which may otherwise lead // to a spin loop //如果当前NioEventLoop是workGroup 则可能是OP_READ,bossGroup是OP_ACCEPT if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) { //新连接接入以及读事件处理入口 unsafe.read(); } }
关键的新连接接入以及读事件处理入口unsafe.read();
a).这里的unsafe是在Channel创建过程的时候,调用了父类AbstractChannel#AbstractChannel()的构造方法,和pipeline一起初始化的。
protected AbstractChannel(Channel parent) { this.parent = parent; id = newId(); unsafe = newUnsafe(); pipeline = newChannelPipeline(); }
服务端:
unsafe 为NioServerSockeChannel的父类AbstractNioMessageChannel#newUnsafe()创建,可以看到对应的是AbstractNioMessageChannel的内部类NioMessageUnsafe;
客户端:
unsafe为NioSocketChannel的的父类AbstractNioUnsafe#newUnsafe()创建的话,它对应的是AbstractNioByteChannel的内部类NioByteUnsafe
b).unsafe.read()
NioMessageUnsafe.read()中主要的操作如下:
1.循环调用jdk底层的代码创建channel,并用netty的NioSocketChannel包装起来,代表新连接成功接入一个通道。
2.将所有获取到的channel存储到一个容器当中,检测接入的连接数,默认是一次接16个连接
3.遍历容器中的channel,依次调用方法fireChannelRead,4.fireChannelReadComplete,fireExceptionCaught来触发对应的传播事件。
private final class NioMessageUnsafe extends AbstractNioUnsafe { //临时存储读到的连接 private final List
而这一段关键代码逻辑中 int localRead = doReadMessages(readBuf);它创建jdk底层channel并且用NioSocketChannel包装起来,将该channel添加到传入的容器保存起来,同时返回一个计数。
protected int doReadMessages(List2.创建NioSocketChannelbuf) throws Exception { SocketChannel ch = SocketUtils.accept(javaChannel()); try { if (ch != null) { //将jdk底层的channel封装到netty的channel,并存储到传入的容器当中 //this为服务端channel buf.add(new NioSocketChannel(this, ch)); //成功和创建 客户端接入的一条通道,并返回 return 1; } } catch (Throwable t) { logger.warn("Failed to create a new channel from an accepted socket.", t); try { ch.close(); } catch (Throwable t2) { logger.warn("Failed to close a socket.", t2); } } return 0; }
通过检测IO事件轮询新连接,当前成功检测到连接接入事件之后,会调用NioServerSocketChannel#doReadMessages()方法,进行创建NioSocketChannel,即客户端channel的过程。
下面就来了解一下NioSocketChannel的主要工作:
.查看原代码做了两件事,调用父类构造方法,实例化一个NioSocketChannelConfig。
public NioSocketChannel(Channel parent, SocketChannel socket) { super(parent, socket); //实例化一个NioSocketChannelConfig config = new NioSocketChannelConfig(this, socket.socket()); }
1)、查看NioSocketChannel父类构造方法,主要是保存客户端注册的读事件、channel为成员变量,以及设置阻塞模式为非阻塞。
public NioSocketChannel(Channel parent, SocketChannel socket) { super(parent, socket); //实例化一个NioSocketChannelConfig config = new NioSocketChannelConfig(this, socket.socket()); } protected AbstractNioByteChannel(Channel parent, SelectableChannel ch) { //传入感兴趣的读事件:客户端channel的读事件 super(parent, ch, SelectionKey.OP_READ); } protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) { super(parent); //保存客户端channel为成员变量 this.ch = ch; //保存感兴趣的读事件为成员变量 this.readInterestOp = readInterestOp; try { //配置阻塞模式为非阻塞 ch.configureBlocking(false); } catch (IOException e) { try { ch.close(); } catch (IOException e2) { if (logger.isWarnEnabled()) { logger.warn( "Failed to close a partially initialized socket.", e2); } } throw new ChannelException("Failed to enter non-blocking mode.", e); } }
最后调用父类的构造方法,是设置该客户端channel对应的服务端channel,以及channel的id和两大组件unsafe和pipeline
protected AbstractChannel(Channel parent) { //parent为创建次客户端channel的服务端channel(服务端启动过程中通过反射创建的) this.parent = parent; id = newId(); unsafe = newUnsafe(); pipeline = newChannelPipeline(); }
2)、再看NioSocketChannelConfig实例化。主要是保存了javaSocket,并且通过setTcpNoDelay(true);禁止了tcp的Nagle算法,目的是为了尽量让小的数据包整合成大的发送出去,降低延时.
private NioSocketChannelConfig(NioSocketChannel channel, Socket javaSocket) { super(channel, javaSocket); calculateMaxBytesPerGatheringWrite(); } public DefaultSocketChannelConfig(SocketChannel channel, Socket javaSocket) { super(channel); if (javaSocket == null) { throw new NullPointerException("javaSocket"); } //保存socket this.javaSocket = javaSocket; // Enable TCP_NODELAY by default if possible. if (PlatformDependent.canEnableTcpNoDelayByDefault()) { try { //禁止Nagle算法,目的是为了让小的数据包尽量集合成大的数据包发送出去 setTcpNoDelay(true); } catch (Exception e) { // Ignore. } } }3.分配线程和注册Selector
服务端启动初始化的时候ServerBootstrap#init(),主要做了一些参数的配置。其中对于childGroup,childOptions,childAttrs,childHandler等参数被进行了多带带配置。作为参数和ServerBootstrapAcceptor一起,被当作一个特殊的handle,封装到pipeline中。ServerBootstrapAcceptor中的eventLoop为workGroup。
public class ServerBootstrap extends AbstractBootstrap{ //省略了很多代码............. @Override void init(Channel channel) throws Exception { //配置AbstractBootstrap.option final Map , Object> options = options0(); synchronized (options) { setChannelOptions(channel, options, logger); } //配置AbstractBootstrap.attr final Map , Object> attrs = attrs0(); synchronized (attrs) { for (Entry , Object> e: attrs.entrySet()) { @SuppressWarnings("unchecked") AttributeKey key = (AttributeKey ) e.getKey(); channel.attr(key).set(e.getValue()); } } //配置pipeline ChannelPipeline p = channel.pipeline(); //获取ServerBootstrapAcceptor配置参数 final EventLoopGroup currentChildGroup = childGroup; final ChannelHandler currentChildHandler = childHandler; final Entry , Object>[] currentChildOptions; final Entry , Object>[] currentChildAttrs; synchronized (childOptions) { currentChildOptions = childOptions.entrySet().toArray(newOptionArray(0)); } synchronized (childAttrs) { currentChildAttrs = childAttrs.entrySet().toArray(newAttrArray(0)); } p.addLast(new ChannelInitializer () { @Override public void initChannel(final Channel ch) throws Exception { final ChannelPipeline pipeline = ch.pipeline(); //配置AbstractBootstrap.handler ChannelHandler handler = config.handler(); if (handler != null) { pipeline.addLast(handler); } ch.eventLoop().execute(new Runnable() { @Override public void run() { //配置ServerBootstrapAcceptor,作为Handle紧跟HeadContext pipeline.addLast(new ServerBootstrapAcceptor( ch, currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs)); } }); } }); } //省略了很多代码............. }
可见,整个服务端pipeline的结构如下图所示。bossGroup控制IO事件的检测与处理,整个bossGroup对应的pipeline只包括头(HeadContext)尾(TailContext)以及中部的ServerBootstrap.ServerBootstrapAcceptor。
当新连接接入的时候AbstractNioMessageChannel.NioMessageUnsafe#read()方法被调用,最终调用fireChannelRead(),方法来触发下一个Handler的channelRead方法。而这个Handler正是ServerBootstrapAcceptor
它是ServerBootstrap的内部类,同时继承自ChannelInboundHandlerAdapter。也是一个ChannelInboundHandler。其中channelRead主要做了以下几件事。
1.为客户端channel的pipeline添加childHandler
2.设置客户端TCP相关属性childOptions和自定义属性childAttrs
3.workGroup选择NioEventLoop并注册Selector
1)、为客户端channel的pipeline添加childHandler
private static class ServerBootstrapAcceptor extends ChannelInboundHandlerAdapter { private final EventLoopGroup childGroup; private final ChannelHandler childHandler; private final Entry, Object>[] childOptions; private final Entry , Object>[] childAttrs; private final Runnable enableAutoReadTask; ServerBootstrapAcceptor( final Channel channel, EventLoopGroup childGroup, ChannelHandler childHandler, Entry , Object>[] childOptions, Entry , Object>[] childAttrs) { this.childGroup = childGroup; this.childHandler = childHandler; this.childOptions = childOptions; this.childAttrs = childAttrs; //省略了一些代码。。。。。 @Override @SuppressWarnings("unchecked") public void channelRead(ChannelHandlerContext ctx, Object msg) { //该channel为客户端接入时创建的channel final Channel child = (Channel) msg; //添加childHandler child.pipeline().addLast(childHandler); //设置TCP相关属性:childOptions setChannelOptions(child, childOptions, logger); //设置自定义属性:childAttrs for (Entry , Object> e: childAttrs) { child.attr((AttributeKey ) e.getKey()).set(e.getValue()); } try { //选择NioEventLoop并注册Selector childGroup.register(child) .addListener(new ChannelFutureListener() { @Override public void operationComplete(ChannelFuture future) throws Exception { if (!future.isSuccess()) { forceClose(child, future.cause()); } } }); } catch (Throwable t) { forceClose(child, t); } } //省略了一些代码。。。。。 }
客户端channel的pipeline添加childHandler,在服务端EchoServer创建流程中,childHandler的时候,使用了ChannelInitializer的一个自定义实例。并且覆盖了其initChannel方法,改方法获取到pipeline并添加具体的Handler。查看ChannelInitializer具体的添加逻辑,handlerAdded方法。其实在initChannel逻辑中,首先是回调到用户代码执行initChannel,用户代码执行添加Handler的添加操作,之后将ChannelInitializer自己从pipeline中删除。
public abstract class ChannelInitializerextends ChannelInboundHandlerAdapter { @Override public void handlerAdded(ChannelHandlerContext ctx) throws Exception { if (ctx.channel().isRegistered()) { // This should always be true with our current DefaultChannelPipeline implementation. // The good thing about calling initChannel(...) in handlerAdded(...) is that there will be no ordering // surprises if a ChannelInitializer will add another ChannelInitializer. This is as all handlers // will be added in the expected order. //初始化Channel if (initChannel(ctx)) { // We are done with init the Channel, removing the initializer now. removeState(ctx); } } } private boolean initChannel(ChannelHandlerContext ctx) throws Exception { if (initMap.add(ctx)) { // Guard against re-entrance. try { //回调到用户代码 initChannel((C) ctx.channel()); } catch (Throwable cause) { // Explicitly call exceptionCaught(...) as we removed the handler before calling initChannel(...). // We do so to prevent multiple calls to initChannel(...). exceptionCaught(ctx, cause); } finally { ChannelPipeline pipeline = ctx.pipeline(); if (pipeline.context(this) != null) { //删除本身 pipeline.remove(this); } } return true; } return false; } }
2)、设置客户端TCP相关属性childOptions和自定义属性childAttrs
这点在ServerBootstrapAcceptor#init()方法中已经体现
3)、workGroup选择NioEventLoop并注册Selector
这要从AbstractBootstrap#initAndRegister()方法开始,然后跟踪源码会来到AbstractUnsafe#register()方法
protected abstract class AbstractUnsafe implements Unsafe { //省略了一些代码。。。。。 @Override public final void register(EventLoop eventLoop, final ChannelPromise promise) { if (eventLoop == null) { throw new NullPointerException("eventLoop"); } if (isRegistered()) { promise.setFailure(new IllegalStateException("registered to an event loop already")); return; } if (!isCompatible(eventLoop)) { promise.setFailure( new IllegalStateException("incompatible event loop type: " + eventLoop.getClass().getName())); return; } AbstractChannel.this.eventLoop = eventLoop; if (eventLoop.inEventLoop()) { register0(promise); } else { try { eventLoop.execute(new Runnable() { @Override public void run() { register0(promise); } }); } catch (Throwable t) { logger.warn( "Force-closing a channel whose registration task was not accepted by an event loop: {}", AbstractChannel.this, t); closeForcibly(); closeFuture.setClosed(); safeSetFailure(promise, t); } } } //省略了一些代码。。。。。 }
最后调用AbstractNioUnsafe#doRegister()方法通过jdk的javaChannel().register完成注册功能。
protected abstract class AbstractNioUnsafe extends AbstractUnsafe implements NioUnsafe { //省略了一些代码。。。。。 @Override protected void doRegister() throws Exception { boolean selected = false; for (;;) { try { selectionKey = javaChannel().register(eventLoop().unwrappedSelector(), 0, this); return; } catch (CancelledKeyException e) { if (!selected) { // Force the Selector to select now as the "canceled" SelectionKey may still be // cached and not removed because no Select.select(..) operation was called yet. eventLoop().selectNow(); selected = true; } else { // We forced a select operation on the selector before but the SelectionKey is still cached // for whatever reason. JDK bug ? throw e; } } } } //省略了一些代码。。。。。 }4.向Selector注册读事件
a)、入口:ServerBootstrap.ServerBootstrapAcceptor#channelRead()#childGroup.register();
public void channelRead(ChannelHandlerContext ctx, Object msg) { final Channel child = (Channel) msg; child.pipeline().addLast(childHandler); setChannelOptions(child, childOptions, logger); for (Entry, Object> e: childAttrs) { child.attr((AttributeKey ) e.getKey()).set(e.getValue()); } try { childGroup.register(child).addListener(new ChannelFutureListener() { @Override public void operationComplete(ChannelFuture future) throws Exception { if (!future.isSuccess()) { forceClose(child, future.cause()); } } }); } catch (Throwable t) { forceClose(child, t); } }
b)、实际上调用了AbstractChannel.AbstractUnsafe#register0(),触发了通道激活事件;
//触发通道激活事件,调用HeadContent的 pipeline.fireChannelActive();
c)、pipeline的头部开始,即DefaultChannelPipeline.HeadContext#channelActive()从而触发了readIfIsAutoRead();
@Override public void channelActive(ChannelHandlerContext ctx) { ctx.fireChannelActive(); readIfIsAutoRead(); }
d)、读事件将从尾部的TailContent#read()被触发,从而依次执行ctx.read(),从尾部开始,每个outboundHandler的read()事件都被触发。直到头部。
@Override public final ChannelPipeline read() { tail.read(); return this; } @Override public ChannelHandlerContext read() { //获取最近的outboundhandler final AbstractChannelHandlerContext next = findContextOutbound(); EventExecutor executor = next.executor(); //并依次执行其read方法 if (executor.inEventLoop()) { next.invokeRead(); } else { Tasks tasks = next.invokeTasks; if (tasks == null) { next.invokeTasks = tasks = new Tasks(next); } executor.execute(tasks.invokeReadTask); } return this; }
e)、进入头部HeadContext#read(),并且最终更改了selectionKey,向selector注册了读事件
HeadContext#read()
@Override public void read(ChannelHandlerContext ctx) { unsafe.beginRead(); }
AbstractChannel#beginRead()
@Override public final void beginRead() { assertEventLoop(); if (!isActive()) { return; } try { doBeginRead(); } catch (final Exception e) { invokeLater(new Runnable() { @Override public void run() { pipeline.fireExceptionCaught(e); } }); close(voidPromise()); } }
AbstractNioMessageChannel#doBeginRead
@Override protected void doBeginRead() throws Exception { if (inputShutdown) { return; } super.doBeginRead(); }
AbstractNioChannel#doBeginRead()
@Override protected void doBeginRead() throws Exception { // Channel.read() or ChannelHandlerContext.read() was called final SelectionKey selectionKey = this.selectionKey; if (!selectionKey.isValid()) { return; } readPending = true; final int interestOps = selectionKey.interestOps(); if ((interestOps & readInterestOp) == 0) { selectionKey.interestOps(interestOps | readInterestOp); } }
参考文章:
Jorgezhong
Netty如何接入新连接基本流程如上所述,如果有误,还望各位指正。建议先从前两篇看起比较好理解点。
【Netty】服务端和客户端
学习NioEventLoop
如果对 Java、大数据感兴趣请长按二维码关注一波,我会努力带给你们价值。觉得对你哪怕有一丁点帮助的请帮忙点个赞或者转发哦。
关注公众号【爱编码】,回复2019有相关资料哦。
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/74852.html
摘要:是一个持久化的协议,相对于这种非持久的协议来说。最大的特点就是实现全双工通信客户端能够实时推送消息给服务端,服务端也能够实时推送消息给客户端。参考链接知乎问题原理原理知乎问题编码什么用如果文章有错的地方欢迎指正,大家互相交流。 前言 今天在慕课网上看到了Java的新教程(Netty入门之WebSocket初体验):https://www.imooc.com/learn/941 WebS...
时间:2018年04月11日星期三 说明:本文部分内容均来自慕课网。@慕课网:https://www.imooc.com 教学源码:https://github.com/zccodere/s... 学习源码:https://github.com/zccodere/s... 第一章:课程介绍 1-1 课程介绍 什么是Netty 高性能、事件驱动、异步非阻塞的IO Java开源框架 基于NIO的客户...
摘要:抽象在中步骤监听端口对应就是,即事件循环,这里的循环包括两个部分,一个是新连接的接入,而另一个则是当前存在连接的数据流的读写。对的抽象服务端接收数据流的载体都是基于,封装了许多高可用的,我们可以基于这些与底层数据流做通信。 传统socket 首先还是先了解下传统socket下的通信流程 showImg(https://segmentfault.com/img/bVbhjv4?w=842...
摘要:的选择器允许单个线程监视多个输入通道。一旦执行的线程已经超过读取代码中的某个数据片段,该线程就不会在数据中向后移动通常不会。 1、引言 很多初涉网络编程的程序员,在研究Java NIO(即异步IO)和经典IO(也就是常说的阻塞式IO)的API时,很快就会发现一个问题:我什么时候应该使用经典IO,什么时候应该使用NIO? 在本文中,将尝试用简明扼要的文字,阐明Java NIO和经典IO之...
阅读 3296·2021-11-24 09:39
阅读 2804·2021-10-12 10:20
阅读 1906·2019-08-30 15:53
阅读 3075·2019-08-30 14:14
阅读 2600·2019-08-29 15:36
阅读 1120·2019-08-29 14:11
阅读 1955·2019-08-26 13:51
阅读 3407·2019-08-26 13:23