资讯专栏INFORMATION COLUMN

开源一个kafka增强:okmq-1.0.0

PAMPANG / 1278人阅读

摘要:只有两个基础组件同时死亡,才会受到严重影响。的意外死亡,造成生产端发送失败。后台会有一个线程进行这些失败消息的遍历和重新投递。二阻塞业务正常进行。死亡,或者多带带死亡,消息最终都会被发出,仅当与同时死亡,消息才会发送失败,并记录在日志文件里。

本工具的核心思想就是:赌。只有两个基础组件同时死亡,才会受到严重影响。哦,断电除外。

mq是个好东西,我们都在用。这也决定了mq应该是高高高可用的。某团就因为这个组件,出了好几次生产事故,呵呵。

大部分业务系统,要求的消息语义都是at least once,即都会有重复消息,但保证不会丢。即使这样,依然有很多问题:

一、mq可用性无法保证。 mq的意外死亡,造成生产端发送失败。很多消息要通过扒取日志进行回放,成本高耗时长。

二、mq阻塞业务正常进行。 mq卡顿或者网络问题,会造成业务线程卡在mq的发送方法上,正常业务进行不下去,造成灾难性的后果。

三、消息延迟。 mq死了就用不着说了,消息还没投胎就已死亡。消息延迟主要是客户端消费能力不强,或者是消费通道单一造成的。

使用组合存储来保证消息的可靠投递,就是okmq

注意:okmq注重的是可靠性。对于顺序性、事务等其他要素,不予考虑。当然,速度是必须的。
设计想法

我即使用两套redis来模拟一些mq操作,都会比现有的一些解决方案要强。但这肯定不是我们需要的,因为redis的堆积能力太有限,内存占用率直线上升的感觉并不太好。

但我们可以用redis来作为额外的发送确认机制。这个想法,在《使用多线程增加kafka消费能力》一文中曾经提到过,现在到了实现的时候了。

首先看下使用Api
OkmqKafkaProducer producer = new ProducerBuilder()
.defaultSerializer()
.eanbleHa("redis")
.any("okmq.redis.mode", "single")
.any("okmq.redis.endpoint", "127.0.0.1:6379")
.any("okmq.redis.poolConfig.maxTotal", 100)
.servers("localhost:9092")
.clientID("okMQProducerTest")
.build();

Packet packet = new Packet();
packet.setTopic("okmq-test-topic");
packet.setContent("i will send you a msg");
producer.sendAsync(packet, null);
producer.shutdown();
以redis为例


我们按照数字标号来介绍:

1、 在消息发送到kafka之前,首先入库redis。由于后续回调需要用到一个唯一表示,我们在packet包里添加了一个uuid。

2、 调用底层的api,进行真正的消息投递。

3、 通过监听kafka的回调,删除redis中对应的key。在这里可以得到某条消息确切的的ack时间。那么长时间没有删除的,就算是投递失败的消息。

4、 后台会有一个线程进行这些失败消息的遍历和重新投递。我们叫做recovery。最复杂的也就是这一部分。对于redis来说,会首先争抢一个持续5min的锁,然后遍历相关hashkey。

所以,对于以上代码,redis发出以下命令:

1559206423.395597 [0 127.0.0.1:62858] "HEXISTS" "okmq:indexhash" "okmq:5197354"
1559206423.396670 [0 127.0.0.1:62858] "HSET" "okmq:indexhash" "okmq:5197354" ""
1559206423.397300 [0 127.0.0.1:62858] "HSET" "okmq:5197354" "okmq::2b9b33fd-95fd-4cd6-8815-4c572f13f76e" "{"content":"i will send you a msg104736623015238","topic":"okmq-test-topic","identify":"2b9b33fd-95fd-4cd6-8815-4c572f13f76e","timestamp":1559206423318}"
1559206423.676212 [0 127.0.0.1:62858] "HDEL" "okmq:5197354" "okmq::2b9b33fd-95fd-4cd6-8815-4c572f13f76e"
1559206428.327788 [0 127.0.0.1:62861] "SET" "okmq:recovery:lock" "01fb85a9-0670-40c3-8386-b2b7178d4faf" "px" "300000"
1559206428.337930 [0 127.0.0.1:62858] "HGETALL" "okmq:indexhash"
1559206428.341365 [0 127.0.0.1:62858] "HSCAN" "okmq:5197354" "0"
1559206428.342446 [0 127.0.0.1:62858] "HDEL" "okmq:indexhash" "okmq:5197354"
1559206428.342788 [0 127.0.0.1:62861] "GET" "okmq:recovery:lock"
1559206428.343119 [0 127.0.0.1:62861] "DEL" "okmq:recovery:lock"
以上问题解答 所以对于以上的三个问题,回答如下:

一、mq可用性无法保证。

为什么要要通过事后进行恢复呢?我把recovery机制带着不是更好么?通过对未收到ack的消息进行遍历,可以把这个过程做成自动化。

二、mq阻塞业务正常进行。

通过设置kafka的MAX_BLOCK_MS_CONFIG
参数,其实是可以不阻塞业务的,但会丢失消息。我可以使用其他存储来保证这些丢失的消息重新发送。

三、消息延迟。

mq死掉了,依然有其他备用通道进行正常服务。也有的团队采用双写mq双消费的方式来保证这个过程,也是被逼急了:)。如果kafka死掉了,业务会切换到备用通道进行消费。

扩展自己的HA

如果你不想用redis,比如你先要用hbase,那也是很简单的。
但需要实现一个HA接口。

public interface HA {
    void close();

    void configure(Properties properties);

    void preSend(Packet packet) throws HaException;

    void postSend(Packet packet) throws HaException;

    void doRecovery(AbstractProducer producer) throws HaException;
}

使用之前,还需要注册一下你的插件。

AbstractProducer.register("log", "com.sayhiai.arch.okmq.api.producer.ha.Ha2SimpleLog");
重要参数
okmq.ha.recoveryPeriod 恢复线程检测周期,默认5秒

okmq.redis.mode redis的集群模式,可选:single、sentinel、cluster
okmq.redis.endpoint 地址,多个地址以,分隔
okmq.redis.connectionTimeout 连接超时
okmq.redis.soTimeout socket超时
okmq.redis.lockPx 分布式锁的持有时间,可默认,5min
okmq.redis.splitMillis 间隔时间,redis换一个key进行运算,默认5min
okmq.redis.poolConfig.* 兼容jedis的所有参数
1.0.0 版本功能

1、进行了生产端的高可用抽象,实现了kafka的样例。

2、增加了SimpleLog的ping、pong日志实现。

3、增加了Redis的生产端备用通道。包含single、cluster、sentinel三种模式。

4、可以自定义其他备用通道。

5、兼容kakfa的所有参数设置。

规划 2.0.0

1、实现ActiveMQ的集成。

2、实现消费者的备用通道集成。

3、增加嵌入式kv存储的生产者集成。

4、更精细的控制系统的行为。

5、加入开关和预热,避免新启动mq即被压垮。

6、redis分片机制,大型系统专用。

3.0.0

1、监控功能添加。

2、rest接口添加。

使用限制

当你把参数ha设置为true,表明你已经收到以下的使用限制。反之,系统反应于原生无异。

使用限制:
本工具仅适用于非顺序性、非事务性的普通消息投递,且客户端已经做了幂等。一些订单系统、消息通知等业务,非常适合。如果你需要其他特性,请跳出此页面。

kafka死亡,或者redis多带带死亡,消息最终都会被发出,仅当kafka与redis同时死亡,消息才会发送失败,并记录在日志文件里。

正常情况下,redis的使用容量极少极少。异常情况下,redis的容量有限,会迅速占满。redis的剩余时间就是你的StopWatch,你必须在这个时间内恢复你的消息系统,一定要顶住哇。

End

系统目前处于1.0.0版本,正在线上小规模试用。工具小众,但适用于大部分应用场景。如果你正在寻求这样的解决方案,欢迎一块完善代码。

github地址:

https://github.com/sayhiai/okmq

也欢迎关注《小姐姐味道》微信公众号,进行交流。

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/74816.html

相关文章

  • Confluent的25亿美元估值可能在开源动荡中提供肯定。

    摘要:的亿美元估值可能在开源中提供肯定,是一家基于的开源软件提供商,在系列融资轮中筹集了亿美元,估值为亿美元。在月最新的期间,在公共预览中为管理流媒体。在两周后通过宣布其平台组件的许可证更改做出了响应。该出版物推测如下,与超分频器持有所有的卡。Confluent的25亿美元估值可能在开源TurbulencetweetConfluent中提供肯定,Confluent是一家基于Apache Kafka...

    enda 评论0 收藏0

发表评论

0条评论

PAMPANG

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<