资讯专栏INFORMATION COLUMN

数据结构与算法——堆的应用

zhiwei / 1301人阅读

摘要:我们可以维护一个大小为的小顶堆,然后依次遍历数组,如果数组数据比堆顶元素大,则插入到堆中,如果小,则不做处理。我们可以维护一个大顶堆,一个小顶堆,小顶堆中存储后个数据,大顶堆中存储前面剩余的数据。

1.  概述

前面说完了堆这种数据结构,并且讲到了它很经典的一个应用:堆排序,其实堆这种数据结构还有其他很多的应用,今天就一起来看看,主要有下列内容:

优先级队列

求 Top K 问题

求中位数

2.  优先级队列

优先级队列是一种特殊的队列,前面学习队列的时候,说到队列满足 先进先出,后进后出 的特点,优先级队列则不是这样。优先级队列中的数据,出队的顺序是有优先级的,优先级高的,先出队列。

而堆其实就可以看作是一个优先级队列,因为堆顶元素总是数据中最大或最小的元素,每次出队列都可以看作取出堆顶元素。

如果你熟悉 Java 语言,则或多或少听说或是使用过 PriorityQueue 这个容器,在《Java 核心技术·卷 I》中,说到 PriorityQueue 就是优先级队列,并且它基于一种很优雅的数据结构——堆。

接下来就小试牛刀,举一个具体的例子来看看优先级队列的应用。例如我们需要合并 10 个有序的小文件,小文件中存储的是有序的字符串数据。借助优先级队列,我们可以很高效的解决这个问题。

我们从每个文件中读取第一个字符串存入优先级队列中,那么每次出队列,都是最小的那个元素。将出队列的数据存储到一个大文件中,然后继续从文件中读取一个字符串存入队列,然后继续出队列,一直循环这个操作。

当然,这主要是针对数据文件较大的情况,如果数据不多,那么直接将全部的数据存入队列,然后依次出队列就可以了,具体问题具体分析。

3.  Top K 问题

这样的问题其实非常的常见了,在一组数据当中 ,我们需要求得其前 K 大的数据。

这分为了两种情况,一是针对 静态数据 ,即数据不会发生变化。我们可以维护一个大小为 K 的小顶堆,然后依次遍历数组,如果数组数据比堆顶元素大,则插入到堆中,如果小,则不做处理。遍历完之后,则堆中存在的数据就是 Top K 了。我用代码模拟了这个过程:

public class GetTopK {
    public static void main(String[] args) {
        int[] num = {2, 34, 45, 56, 76, 65, 678, 33, 888, 678, 98, 0, 7};

        //求 Top 3
        Queue queue = new PriorityQueue<>(3);
        queue.add(num[0]);
        queue.add(num[1]);
        queue.add(num[2]);

        for (int i = 3; i < num.length; i++) {
            int small = queue.peek();
            if (num[i] > small){
                queue.poll();
                queue.add(num[i]);
            }
        }
        System.out.println(queue.toString());
    }
}

第二种情况,是动态的数据集合,数据会有增加、删除的情况,如果新增一个元素,将其和堆顶元素进行比较,如果数据比堆顶元素大,则插入到堆中,如果小,则不做处理。这样的话,无论数据怎样变化,我们都能够随时拿到 Top K,而不用因为数据的变化重新组织堆。

4.  求中位数

顾名思义,中位数就是一组数据中最中间的那个数据,只不过注意,数据需要有序排列。针对一个大小为 n 的数据集,如果 n 为偶数,那么中位数有两个,分别是 n/2 和 n/2 + 1 这两个数据,我们可以随机取其中一个;如果 n 为奇数,则 n/2 + 1 这个数为中位数。

如果是一个静态的数据,那么可直接排序然后求中位数,但是如果数据有变化,这样每次排序的成本太高了。所以,可以借助堆来实现求中位数的功能。

我们可以维护一个大顶堆,一个小顶堆,小顶堆中存储后 n/2 个数据,大顶堆中存储前面剩余的数据。如果 n 是偶数,则两个堆中存储的都是相同个数的数据,如果 n 为奇数,则大顶堆中要多一个数据。结合下图你就很容易明白了:

如果有数据插入的情况,如果数据小于等于大顶堆顶元素,则插入到大顶堆中,如果数据大于等于小顶堆顶元素,则插入到小顶堆中。只不过可能会出现一个问题,就是堆中的数据不满足均分情况,那么我们需要移动两个堆中的元素,反正需要保证 大顶堆的元素个数和小顶堆的元素个数要么相等,或者大顶堆中多一个。

我用代码简单模拟了整个实现:

    public class GetMiddleNum {
        public static void main(String[] args) {
            //原始数据
            Integer[] num = {12, 34, 6, 43, 78, 65, 42, 33, 5, 8};
            //排序后存入ArrayList中
            Arrays.sort(num);
            ArrayList data = new ArrayList<>(Arrays.asList(num));
            //大顶堆
            Queue bigQueue = new PriorityQueue<>((o1, o2) -> {
                if (o1 <= o2) return 1;
                else return -1;
            });
            //小顶堆
            Queue smallQueue = new PriorityQueue<>();
    
            int n = data.size();
            int i;
            if (n % 2 == 0) i = n / 2;
            else i = n / 2 + 1;
    
            //后 n/2 的数据存入到小顶堆中
            for (int j = i; j < n; j++) {
                smallQueue.add(data.get(j));
            }
            //前面的数据存入到大顶堆中
            for (int j = 0; j < i; j++) {
                bigQueue.add(data.get(j));
            }
    
            //插入数据,需要做多带带的处理
            insert(data, 99, bigQueue, smallQueue);
            insert(data, 3, bigQueue, smallQueue);
            insert(data, 1, bigQueue, smallQueue);
    
            //大顶堆的堆顶元素就是中位数
            System.out.println("The middle num = " + bigQueue.peek());
        }
    
        private static void insert(List list, int value, Queue bigQueue, Queue smallQueue){
            list.add(value);
            if (value <= bigQueue.peek())
                bigQueue.add(value);
            if (value >= smallQueue.peek())
                smallQueue.add(value);
    
            while (smallQueue.size() > bigQueue.size())
                bigQueue.add(smallQueue.poll());
            while (bigQueue.size() - smallQueue.size() > 1)
                smallQueue.add(bigQueue.poll());
        }
    }

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/74081.html

相关文章

  • JavaScript数据结构算法(十一)二叉堆

    摘要:二叉堆数据结构是一种特殊的二叉树,他能高效快速的找出最大值和最小值,常应用于优先队列和著名的堆排序算法中。 二叉堆数据结构是一种特殊的二叉树,他能高效、快速的找出最大值和最小值,常应用于优先队列和著名的堆排序算法中。 二叉堆 二叉堆有以下两个特性: 是一颗完全二叉树,表示数的每一层都有左侧和右侧子节点(除最后一层的叶节点),并且最后一层的叶节点尽可能是左侧子节点 二叉堆不是最小堆就是...

    MartinHan 评论0 收藏0
  • 数据结构算法——堆

    摘要:堆排序的时间复杂度非常的稳定,是,并且是原地排序算法,具体是怎么实现的呢我们一般把堆排序分为两个步骤建堆和排序。 1. 什么是堆 堆(Heap),其实是一种特殊的二叉树,主要满足了二叉树的两个条件: 堆是一种完全二叉树,还记得完全二叉树的定义吗?叶节点都在最底下两层,最后一层的节点都靠左排列,并且除了最后一层,其他层的节点个数都要达到最大,这种树叫做完全二叉树。 堆中的每个节点的值都...

    hankkin 评论0 收藏0

发表评论

0条评论

zhiwei

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<