资讯专栏INFORMATION COLUMN

java性能调优记录(限流)

keithyau / 2570人阅读

摘要:在中,一个线程可以处理多个,但是一个只能绑定到一个,这是基于线程安全和同步考虑而设计的。线程阻塞再次进行压力测试,结果如下最终结果没有任何提升,利用率依然不超过,也还是在单个利用率最高不超过,说明这次的瓶颈不是。但是其中出现了软中断。

1. 问题

spring-cloud-gateway 网关新增了一个限流功能,使用的是模块自带的限流过滤器 RequestRateLimiterGatewayFilterFactory,基于令牌桶算法,通过 redis 实现。

其原理是 redis 中针对每个限流要素(比如针对接口限流),保存 2 个 key:tokenKey(令牌数量),timeKey(调用时间)。每次接口调用时,更新 tokenKey 的值为:原先的值 + (当前时间 - 原先时间)* 加入令牌的速度,如果新的 tokenKey 的值大于 1,那么允许调用,否则不允许;同时更新 redis 中 tokenKey,timeKey 的值。整个过程通过 lua 脚本实现。

在加入限流功能之前,500 客户端并发访问,tps 为 6800 req/s,50% 时延为 70ms;加入限流功能之后,tps 为 2300 req/s,50% 时延为 205ms,同时,原先 cpu 占用率几乎 600%(6 核) 变成不到 400%(cpu 跑不满了)。

2. 排查和解决过程
2.1 单个 CPU 跑满

查看单个线程的 cpu 占用:

[root@auth-service imf2]# top -Hp 29360
top - 15:16:27 up 102 days, 18:04,  1 user,  load average: 1.61, 0.72, 0.34
Threads: 122 total,   9 running, 113 sleeping,   0 stopped,   0 zombie
%Cpu(s): 42.0 us,  7.0 sy,  0.0 ni, 49.0 id,  0.0 wa,  0.0 hi,  2.0 si,  0.0 st
KiB Mem :  7678384 total,   126844 free,  3426148 used,  4125392 buff/cache
KiB Swap:  6291452 total,  2212552 free,  4078900 used.  3347956 avail Mem

  PID USER      PR  NI    VIRT    RES    SHR S %CPU %MEM     TIME+ COMMAND
29415 root      20   0 6964708   1.1g  14216 R 97.9 15.1   3:01.65 java
29392 root      20   0 6964708   1.1g  14216 R 27.0 15.1   0:45.42 java
29391 root      20   0 6964708   1.1g  14216 R 24.8 15.1   0:43.95 java
29387 root      20   0 6964708   1.1g  14216 R 23.8 15.1   0:46.38 java
29388 root      20   0 6964708   1.1g  14216 R 23.4 15.1   0:48.21 java
29390 root      20   0 6964708   1.1g  14216 R 23.0 15.1   0:45.93 java
29389 root      20   0 6964708   1.1g  14216 R 22.3 15.1   0:44.36 java

线程 29415 几乎跑满了 cpu,查看是什么线程:

[root@auth-service imf2]# printf "%x
" 29415
72e7
[root@auth-service imf2]# jstack 29360 | grep 72e7
"lettuce-nioEventLoop-4-1" #40 daemon prio=5 os_prio=0 tid=0x00007f604cc92000 nid=0x72e7 runnable [0x00007f606ce90000]

果然是操作 redis 的线程,和预期一致。

查看 redis:cpu 占用率不超过 15%,没有 10ms 以上的慢查询。应该不会是 redis 的问题。

查看线程栈信息:

通过以下脚本每秒记录一次 jstack:

[root@eureka2 jstack]# cat jstack.sh
#!/bin/sh
i=0
while [ $i -lt 30 ]; do
/bin/sleep 1
i=`expr $i + 1`
jstack 29360 > "$i".txt
done

查看 lettuce 线程主要执行哪些函数:

"lettuce-nioEventLoop-4-1" #36 daemon prio=5 os_prio=0 tid=0x00007f1eb07ab800 nid=0x4476 runnable [0x00007f1eec8fb000]
   java.lang.Thread.State: RUNNABLE
        at sun.misc.URLClassPath$Loader.findResource(URLClassPath.java:715)
        at sun.misc.URLClassPath.findResource(URLClassPath.java:215)
        at java.net.URLClassLoader$2.run(URLClassLoader.java:569)
        at java.net.URLClassLoader$2.run(URLClassLoader.java:567)
        at java.security.AccessController.doPrivileged(Native Method)
        at java.net.URLClassLoader.findResource(URLClassLoader.java:566)
        at org.springframework.boot.loader.LaunchedURLClassLoader.findResource(LaunchedURLClassLoader.java:57)
        at java.lang.ClassLoader.getResource(ClassLoader.java:1096)
        at org.springframework.core.io.ClassPathResource.resolveURL(ClassPathResource.java:155)
        at org.springframework.core.io.ClassPathResource.getURL(ClassPathResource.java:193)
        at org.springframework.core.io.AbstractFileResolvingResource.lastModified(AbstractFileResolvingResource.java:220)
        at org.springframework.scripting.support.ResourceScriptSource.retrieveLastModifiedTime(ResourceScriptSource.java:119)
        at org.springframework.scripting.support.ResourceScriptSource.isModified(ResourceScriptSource.java:109)
        - locked <0x000000008c074d00> (a java.lang.Object)
        at org.springframework.data.redis.core.script.DefaultRedisScript.getSha1(DefaultRedisScript.java:89)
        - locked <0x000000008c074c10> (a java.lang.Object)
        at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor.eval(DefaultReactiveScriptExecutor.java:113)
        at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor.lambda$execute$0(DefaultReactiveScriptExecutor.java:105)
        at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor$$Lambda$1268/1889039573.doInRedis(Unknown Source)
        at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor.lambda$execute$6(DefaultReactiveScriptExecutor.java:167)
        at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor$$Lambda$1269/1954779522.get(Unknown Source)
        at reactor.core.publisher.FluxDefer.subscribe(FluxDefer.java:46)

可知该线程主要在执行 ReactiveRedisTemplate 类的 execute(RedisScript script, List keys, List args) 方法,即运行 lua 脚本。

猜想:既然是因为 lettuce-nioEventLoop 线程跑满了 cpu,那么通过创建多个 lettuce-nioEventLoop 线程,以充分利用多核的特点,是否可以解决呢?

以下为源码分析阶段:

// 1. RedisConnectionFactory bean 的创建依赖 ClientResources
@Bean
@ConditionalOnMissingBean(RedisConnectionFactory.class)
public LettuceConnectionFactory redisConnectionFactory(
    ClientResources clientResources) throws UnknownHostException {
    LettuceClientConfiguration clientConfig = getLettuceClientConfiguration(
        clientResources, this.properties.getLettuce().getPool());
    return createLettuceConnectionFactory(clientConfig);
}

// 2. ClientResources bean 的创建如下
@Bean(destroyMethod = "shutdown")
@ConditionalOnMissingBean(ClientResources.class)
public DefaultClientResources lettuceClientResources() {
    return DefaultClientResources.create();
}

public static DefaultClientResources create() {
    return builder().build();
}

// 3. 创建 EventLoopGroupProvider 对象
protected DefaultClientResources(Builder builder) {
    this.builder = builder;

    // 默认为 null,执行这块代码
    if (builder.eventLoopGroupProvider == null) {
        // 设置处理 redis 连接的线程数:默认为
        //    Math.max(1,
        //        SystemPropertyUtil.getInt("io.netty.eventLoopThreads",
        //                Math.max(MIN_IO_THREADS, Runtime.getRuntime().availableProcessors())));
        // 针对多核处理器,该值一般等于 cpu 的核的数量
        int ioThreadPoolSize = builder.ioThreadPoolSize;

        if (ioThreadPoolSize < MIN_IO_THREADS) {
            logger.info("ioThreadPoolSize is less than {} ({}), setting to: {}", MIN_IO_THREADS, ioThreadPoolSize,
                    MIN_IO_THREADS);
            ioThreadPoolSize = MIN_IO_THREADS;
        }

        this.sharedEventLoopGroupProvider = false;
        // 创建 EventLoopGroupProvider 对象
        this.eventLoopGroupProvider = new DefaultEventLoopGroupProvider(ioThreadPoolSize);

    } else {
        this.sharedEventLoopGroupProvider = true;
        this.eventLoopGroupProvider = builder.eventLoopGroupProvider;
    }

    // 以下代码省略 ...
}

// 4. 通过 EventLoopGroupProvider 创建 EventExecutorGroup 对象
public static  EventExecutorGroup createEventLoopGroup(Class type, int numberOfThreads) {

    if (DefaultEventExecutorGroup.class.equals(type)) {
        return new DefaultEventExecutorGroup(numberOfThreads, new DefaultThreadFactory("lettuce-eventExecutorLoop", true));
    }

    // 我们采用的是 Nio 模式,会执行这个分支
    if (NioEventLoopGroup.class.equals(type)) {
        return new NioEventLoopGroup(numberOfThreads, new DefaultThreadFactory("lettuce-nioEventLoop", true));
    }

    if (EpollProvider.isAvailable() && EpollProvider.isEventLoopGroup(type)) {
        return EpollProvider.newEventLoopGroup(numberOfThreads, new DefaultThreadFactory("lettuce-epollEventLoop", true));
    }

    if (KqueueProvider.isAvailable() && KqueueProvider.isEventLoopGroup(type)) {
        return KqueueProvider.newEventLoopGroup(numberOfThreads, new DefaultThreadFactory("lettuce-kqueueEventLoop", true));
    }

    throw new IllegalArgumentException(String.format("Type %s not supported", type.getName()));
}

// 5. NioEventLoopGroup 继承了 MultithreadEventLoopGroup;
//    创建了多个 NioEventLoop;
//      每个 NioEventLoop 都是单线程;
//      每个 NioEventLoop 都可以处理多个连接。
public class NioEventLoopGroup extends MultithreadEventLoopGroup { ... }
public abstract class MultithreadEventLoopGroup extends MultithreadEventExecutorGroup implements EventLoopGroup { ... }
public final class NioEventLoop extends SingleThreadEventLoop { ... }

以上分析可知,默认创建的 RedisConnectionFactory bean 其实是支持多线程的,但通过 jstack 等方式查看 lettuce-nioEventLoop 线程却只有一个。

[root@ ~]# ss | grep 6379
tcp    ESTAB      0      0      ::ffff:10.201.0.27:36184                ::ffff:10.201.0.30:6379

查看 redis 连接,发现只有一个。在 Netty 中,一个 EventLoop 线程可以处理多个 Channel,但是一个 Channel 只能绑定到一个 EventLoop,这是基于线程安全和同步考虑而设计的。这解释了为什么只有一个 lettuce-nioEventLoop。

下面继续分析为什么会只有一个连接呢?继续源码分析:

// 1. 创建 RedisConnectionFactory bean
@Bean
@ConditionalOnMissingBean(RedisConnectionFactory.class)
public LettuceConnectionFactory redisConnectionFactory(
    ClientResources clientResources) throws UnknownHostException {
    LettuceClientConfiguration clientConfig = getLettuceClientConfiguration(
        clientResources, this.properties.getLettuce().getPool());
    return createLettuceConnectionFactory(clientConfig);
}

// 2. 查看 createLettuceConnectionFactory(clientConfig) 方法
private LettuceConnectionFactory createLettuceConnectionFactory(
    LettuceClientConfiguration clientConfiguration) {
    if (getSentinelConfig() != null) {
        return new LettuceConnectionFactory(getSentinelConfig(), clientConfiguration);
    }
    if (getClusterConfiguration() != null) {
        return new LettuceConnectionFactory(getClusterConfiguration(),
                                            clientConfiguration);
    }
    // 没有哨兵模式,没有集群,执行这块代码
    return new LettuceConnectionFactory(getStandaloneConfig(), clientConfiguration);
}

// 3. 获取 redis 连接
private boolean shareNativeConnection = true;
public LettuceReactiveRedisConnection getReactiveConnection() {
    // 默认为 true
    return getShareNativeConnection()
        ? new LettuceReactiveRedisConnection(getSharedReactiveConnection(), reactiveConnectionProvider)
        : new LettuceReactiveRedisConnection(reactiveConnectionProvider);
}

LettuceReactiveRedisConnection(StatefulConnection sharedConnection, LettuceConnectionProvider connectionProvider) {
    Assert.notNull(sharedConnection, "Shared StatefulConnection must not be null!");
    Assert.notNull(connectionProvider, "LettuceConnectionProvider must not be null!");
    this.dedicatedConnection = new AsyncConnect(connectionProvider, StatefulConnection.class);
    this.pubSubConnection = new AsyncConnect(connectionProvider, StatefulRedisPubSubConnection.class);
    // 包装 sharedConnection
    this.sharedConnection = Mono.just(sharedConnection);
}

protected Mono> getConnection() {
    // 直接返回 sharedConnection
    if (sharedConnection != null) {
        return sharedConnection;
    }

    return getDedicatedConnection();
}

// 4. shareNativeConnection 是怎么来的
protected StatefulConnection getSharedReactiveConnection() {
    return shareNativeConnection ? getOrCreateSharedReactiveConnection().getConnection() : null;
}

private SharedConnection getOrCreateSharedReactiveConnection() {
    synchronized (this.connectionMonitor) {
        if (this.reactiveConnection == null) {
            this.reactiveConnection = new SharedConnection<>(reactiveConnectionProvider, true);
        }
        return this.reactiveConnection;
    }
}

StatefulConnection getConnection() {
    synchronized (this.connectionMonitor) {
        // 第一次通过 getNativeConnection() 获取连接;之后直接返回该连接
        if (this.connection == null) {
            this.connection = getNativeConnection();
        }
        if (getValidateConnection()) {
            validateConnection();
        }
        return this.connection;
    }
}

分析以上源码,关键就在于 shareNativeConnection 默认为 true,导致只有一个连接。

更改 shareNativeConnection 的值为 true,并开启 lettuce 连接池,最大连接数设置为 6;再次测试,

[root@eureka2 jstack]# ss | grep 6379
tcp    ESTAB      0      0      ::ffff:10.201.0.27:48937                ::ffff:10.201.0.30:6379
tcp    ESTAB      0      0      ::ffff:10.201.0.27:35842                ::ffff:10.201.0.30:6379
tcp    ESTAB      0      0      ::ffff:10.201.0.27:48932                ::ffff:10.201.0.30:6379
tcp    ESTAB      0      0      ::ffff:10.201.0.27:48930                ::ffff:10.201.0.30:6379
tcp    ESTAB      0      0      ::ffff:10.201.0.27:48936                ::ffff:10.201.0.30:6379
tcp    ESTAB      0      0      ::ffff:10.201.0.27:48934                ::ffff:10.201.0.30:6379

[root@eureka2 jstack]# jstack 23080 | grep lettuce-epollEventLoop
"lettuce-epollEventLoop-4-6" #69 daemon prio=5 os_prio=0 tid=0x00007fcfa4012000 nid=0x5af2 runnable [0x00007fcfa81ef000]
"lettuce-epollEventLoop-4-5" #67 daemon prio=5 os_prio=0 tid=0x00007fcf94003800 nid=0x5af0 runnable [0x00007fcfa83f1000]
"lettuce-epollEventLoop-4-4" #60 daemon prio=5 os_prio=0 tid=0x00007fcfa0003000 nid=0x5ae9 runnable [0x00007fcfa8af8000]
"lettuce-epollEventLoop-4-3" #59 daemon prio=5 os_prio=0 tid=0x00007fcfb00b8000 nid=0x5ae8 runnable [0x00007fcfa8bf9000]
"lettuce-epollEventLoop-4-2" #58 daemon prio=5 os_prio=0 tid=0x00007fcf6c00f000 nid=0x5ae7 runnable [0x00007fcfa8cfa000]
"lettuce-epollEventLoop-4-1" #43 daemon prio=5 os_prio=0 tid=0x00007fcfac248800 nid=0x5a64 runnable [0x00007fd00c2b9000]

可以看到已经建立了 6 个 redis 连接,并且创建了 6 个 eventLoop 线程。

2.2 线程阻塞

再次进行压力测试,结果如下:

[root@hystrix-dashboard wrk]# wrk -t 10 -c 500 -d 30s --latency -T 3s -s post-test.lua "http://10.201.0.27:8888/api/v1/json"
Running 30s test @ http://10.201.0.27:8888/api/v1/json
  10 threads and 500 connections
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency   215.83ms  104.38ms   1.00s    75.76%
    Req/Sec   234.56     49.87   434.00     71.45%
  Latency Distribution
     50%  210.63ms
     75%  281.30ms
     90%  336.78ms
     99%  519.51ms
  69527 requests in 30.04s, 22.43MB read
Requests/sec:   2314.14
Transfer/sec:    764.53KB
[root@eureka2 jstack]# top -Hp 23080
top - 10:08:10 up 162 days, 12:31,  2 users,  load average: 2.92, 1.19, 0.53
Threads: 563 total,   9 running, 554 sleeping,   0 stopped,   0 zombie
%Cpu(s): 50.5 us, 10.2 sy,  0.0 ni, 36.2 id,  0.1 wa,  0.0 hi,  2.9 si,  0.0 st
KiB Mem :  7677696 total,   215924 free,  3308248 used,  4153524 buff/cache
KiB Swap:  6291452 total,  6291452 free,        0 used.  3468352 avail Mem

  PID USER      PR  NI    VIRT    RES    SHR S %CPU %MEM     TIME+ COMMAND
23280 root      20   0 7418804   1.3g   7404 R 42.7 17.8   0:54.75 java
23272 root      20   0 7418804   1.3g   7404 S 31.1 17.8   0:44.63 java
23273 root      20   0 7418804   1.3g   7404 S 31.1 17.8   0:44.45 java
23271 root      20   0 7418804   1.3g   7404 R 30.8 17.8   0:44.63 java
23282 root      20   0 7418804   1.3g   7404 S 30.5 17.8   0:44.96 java
23119 root      20   0 7418804   1.3g   7404 R 24.8 17.8   1:27.30 java
23133 root      20   0 7418804   1.3g   7404 R 23.8 17.8   1:29.55 java
23123 root      20   0 7418804   1.3g   7404 S 23.5 17.8   1:28.98 java
23138 root      20   0 7418804   1.3g   7404 S 23.5 17.8   1:44.19 java
23124 root      20   0 7418804   1.3g   7404 R 22.8 17.8   1:32.21 java
23139 root      20   0 7418804   1.3g   7404 R 22.5 17.8   1:29.49 java

最终结果没有任何提升,cpu 利用率依然不超过 400%,tps 也还是在 2300 request/s;单个 cpu 利用率最高不超过 50%,说明这次的瓶颈不是 cpu。

通过 jstack 查看线程状态,

"lettuce-epollEventLoop-4-3" #59 daemon prio=5 os_prio=0 tid=0x00007fcfb00b8000 nid=0x5ae8 waiting for monitor entry [0x00007fcfa8bf8000]
   java.lang.Thread.State: BLOCKED (on object monitor)
        at org.springframework.data.redis.core.script.DefaultRedisScript.getSha1(DefaultRedisScript.java:88)
        - waiting to lock <0x000000008c1da690> (a java.lang.Object)
        at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor.eval(DefaultReactiveScriptExecutor.java:113)
        at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor.lambda$execute$0(DefaultReactiveScriptExecutor.java:105)
        at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor$$Lambda$1317/1912229933.doInRedis(Unknown Source)
        at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor.lambda$execute$6(DefaultReactiveScriptExecutor.java:167)
        at org.springframework.data.redis.core.script.DefaultReactiveScriptExecutor$$Lambda$1318/1719274268.get(Unknown Source)
        at reactor.core.publisher.FluxDefer.subscribe(FluxDefer.java:46)
        at reactor.core.publisher.FluxDoFinally.subscribe(FluxDoFinally.java:73)
        at reactor.core.publisher.FluxOnErrorResume.subscribe(FluxOnErrorResume.java:47)
        at reactor.core.publisher.MonoReduceSeed.subscribe(MonoReduceSeed.java:65)
        at reactor.core.publisher.MonoMapFuseable.subscribe(MonoMapFuseable.java:59)
        at reactor.core.publisher.MonoFlatMap.subscribe(MonoFlatMap.java:60)
        at reactor.core.publisher.Mono.subscribe(Mono.java:3608)
        at reactor.core.publisher.FluxFlatMap.trySubscribeScalarMap(FluxFlatMap.java:169)
        at reactor.core.publisher.MonoFlatMap.subscribe(MonoFlatMap.java:53)
        at reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:52)
        at reactor.core.publisher.MonoFlatMap$FlatMapMain.onNext(MonoFlatMap.java:150)
        at reactor.core.publisher.FluxSwitchIfEmpty$SwitchIfEmptySubscriber.onNext(FluxSwitchIfEmpty.java:67)
        at reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1476)
        at reactor.core.publisher.MonoFlatMap$FlatMapInner.onNext(MonoFlatMap.java:241)
        at reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1476)
        at reactor.core.publisher.MonoProcessor.subscribe(MonoProcessor.java:457)
        at reactor.core.publisher.MonoFlatMap$FlatMapMain.onNext(MonoFlatMap.java:150)
        at reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1476)
        at reactor.core.publisher.MonoHasElement$HasElementSubscriber.onNext(MonoHasElement.java:74)
        at reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1476)
        at reactor.core.publisher.MonoProcessor.onNext(MonoProcessor.java:389)
        at reactor.core.publisher.MonoNext$NextSubscriber.onNext(MonoNext.java:76)
        at reactor.core.publisher.FluxDoFinally$DoFinallySubscriber.onNext(FluxDoFinally.java:123)
        at reactor.core.publisher.FluxMap$MapSubscriber.onNext(FluxMap.java:114)
        at reactor.core.publisher.FluxMap$MapSubscriber.onNext(FluxMap.java:114)
        at reactor.core.publisher.FluxFilter$FilterSubscriber.onNext(FluxFilter.java:107)
        at reactor.core.publisher.MonoNext$NextSubscriber.onNext(MonoNext.java:76)
        at reactor.core.publisher.FluxOnErrorResume$ResumeSubscriber.onNext(FluxOnErrorResume.java:73)
        at reactor.core.publisher.MonoFlatMapMany$FlatMapManyInner.onNext(MonoFlatMapMany.java:238)
        at reactor.core.publisher.FluxDefaultIfEmpty$DefaultIfEmptySubscriber.onNext(FluxDefaultIfEmpty.java:92)
        at reactor.core.publisher.FluxMap$MapSubscriber.onNext(FluxMap.java:114)
        at reactor.core.publisher.MonoNext$NextSubscriber.onNext(MonoNext.java:76)
        at io.lettuce.core.RedisPublisher$RedisSubscription.onNext(RedisPublisher.java:270)
        at io.lettuce.core.RedisPublisher$SubscriptionCommand.complete(RedisPublisher.java:754)
        at io.lettuce.core.protocol.CommandWrapper.complete(CommandWrapper.java:59)
        at io.lettuce.core.protocol.CommandHandler.complete(CommandHandler.java:646)
        at io.lettuce.core.protocol.CommandHandler.decode(CommandHandler.java:604)
        at io.lettuce.core.protocol.CommandHandler.channelRead(CommandHandler.java:556)
        at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
        at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
        at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
        at io.netty.channel.ChannelInboundHandlerAdapter.channelRead(ChannelInboundHandlerAdapter.java:86)
        at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
        at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
        at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
        at io.netty.channel.ChannelInboundHandlerAdapter.channelRead(ChannelInboundHandlerAdapter.java:86)
        at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
        at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
        at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
        at io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1434)
        at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
        at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
        at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:965)
        at io.netty.channel.epoll.AbstractEpollStreamChannel$EpollStreamUnsafe.epollInReady(AbstractEpollStreamChannel.java:799)
        at io.netty.channel.epoll.EpollEventLoop.processReady(EpollEventLoop.java:433)
        at io.netty.channel.epoll.EpollEventLoop.run(EpollEventLoop.java:330)
        at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:897)
        at io.netty.util.concurrent.FastThreadLocalRunnable.run(FastThreadLocalRunnable.java:30)
        at java.lang.Thread.run(Thread.java:748)

有 4 个 lettuce-epollEventLoop 线程都处于 BLOCKED 状态,继续查看源码:

public class DefaultRedisScript implements RedisScript, InitializingBean {
    private @Nullable ScriptSource scriptSource;
    private @Nullable String sha1;
    private @Nullable Class resultType;

    public String getSha1() {
        // 1. 线程需要先获取 shaModifiedMonitor 锁
        synchronized (shaModifiedMonitor) {
            // 第一次调用时或者 lua 脚本文件被修改时,需要重新计算 sha1 的值
            // 否则直接返回sha1
            if (sha1 == null || scriptSource.isModified()) {
                this.sha1 = DigestUtils.sha1DigestAsHex(getScriptAsString());
            }
            return sha1;
        }
    }

    public String getScriptAsString() {
        try {
            return scriptSource.getScriptAsString();
        } catch (IOException e) {
            throw new ScriptingException("Error reading script text", e);
        }
    }
}

public class ResourceScriptSource implements ScriptSource {
    // 只有第一次调用或者 lua 脚本文件被修改时,才会执行这个方法
    @Override
    public String getScriptAsString() throws IOException {
        synchronized (this.lastModifiedMonitor) {
            this.lastModified = retrieveLastModifiedTime();
        }
        Reader reader = this.resource.getReader();
        return FileCopyUtils.copyToString(reader);
    }

    @Override
    public boolean isModified() {
        // 2. 每次都需要判断 lua 脚本是否被修改
        // 线程需要再获取 lastModifiedMonitor 锁
        synchronized (this.lastModifiedMonitor) {
            return (this.lastModified < 0 || retrieveLastModifiedTime() > this.lastModified);
        }
    }
}

对于限流操作,重要性并没有那么高,而且计算接口调用次数的 lua 脚本,一般也不会经常改动,所以没必要获取 sha1 的值的时候都查看下脚本是否有改动;如果偶尔改动的话,可以通过新增一个刷新接口,在改动脚本文件后通过手动刷新接口来改变 sha1 的值。

所以这里,可以把同步操作去掉;我改成了这样:

public class CustomRedisScript extends DefaultRedisScript {
    private @Nullable String sha1;

    CustomRedisScript(ScriptSource scriptSource, Class resultType) {
        setScriptSource(scriptSource);
        setResultType(resultType);
        this.sha1 = DigestUtils.sha1DigestAsHex(getScriptAsString());
    }

    @Override
    public String getSha1() {
        return sha1;
    }
}
2.3 cpu 出现大量软中断

继续测试,结果如下:

[root@hystrix-dashboard wrk]# wrk -t 10 -c 500 -d 30s -T 3s -s post-test.lua --latency "http://10.201.0.27:8888/api/v1/json"
Running 30s test @ http://10.201.0.27:8888/api/v1/json
  10 threads and 500 connections
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency   155.60ms  110.40ms   1.07s    67.68%
    Req/Sec   342.90     64.88   570.00     70.35%
  Latency Distribution
     50%  139.14ms
     75%  211.03ms
     90%  299.74ms
     99%  507.03ms
  102462 requests in 30.02s, 33.15MB read
Requests/sec:   3413.13
Transfer/sec:      1.10MB

cpu 利用率 500% 左右,tps 达到了 3400 req/s,性能大幅度提升。查看 cpu 状态:

[root@eureka2 imf2]# top -Hp 19021
top - 16:24:09 up 163 days, 18:47,  2 users,  load average: 3.03, 1.08, 0.47
Threads: 857 total,   7 running, 850 sleeping,   0 stopped,   0 zombie
%Cpu0  : 60.2 us, 10.0 sy,  0.0 ni,  4.3 id,  0.0 wa,  0.0 hi, 25.4 si,  0.0 st
%Cpu1  : 64.6 us, 16.3 sy,  0.0 ni, 19.0 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
%Cpu2  : 65.7 us, 15.8 sy,  0.0 ni, 18.5 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
%Cpu3  : 54.5 us, 15.8 sy,  0.0 ni, 29.5 id,  0.3 wa,  0.0 hi,  0.0 si,  0.0 st
%Cpu4  : 55.0 us, 17.8 sy,  0.0 ni, 27.2 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
%Cpu5  : 53.2 us, 16.4 sy,  0.0 ni, 30.0 id,  0.3 wa,  0.0 hi,  0.0 si,  0.0 st
KiB Mem :  7677696 total,   174164 free,  3061892 used,  4441640 buff/cache
KiB Swap:  6291452 total,  6291452 free,        0 used.  3687692 avail Mem

  PID USER      PR  NI    VIRT    RES    SHR S %CPU %MEM     TIME+ COMMAND
19075 root      20   0 7722156   1.2g  14488 S 41.4 15.9   0:55.71 java
19363 root      20   0 7722156   1.2g  14488 R 40.1 15.9   0:41.33 java
19071 root      20   0 7722156   1.2g  14488 R 37.1 15.9   0:56.38 java
19060 root      20   0 7722156   1.2g  14488 S 35.4 15.9   0:52.74 java
19073 root      20   0 7722156   1.2g  14488 R 35.1 15.9   0:55.83 java

cpu0 利用率达到了 95.7%,几乎跑满。但是其中出现了 si(软中断): 25.4%。

查看软中断类型:

[root@eureka2 imf2]# watch -d -n 1 "cat /proc/softirqs"
                    CPU0       CPU1      CPU2       CPU3    CPU4       CPU5
          HI:          0          0          0          0          0          0
       TIMER: 1629142082  990710808  852299786  606344269  586896512  566624764
      NET_TX:     291570     833710      9616       5295    5358    2012064
      NET_RX: 2563401537   32502894   31370533    6886869    6530120    6490002
       BLOCK:       18130       1681   41404591    8751054    8695636    8763338
BLOCK_IOPOLL:          0          0          0          0          0          0
     TASKLET:   39225643          0          0        817      17304    2516988
       SCHED:  782335782  442142733  378856479  248794679  238417109  259695794
     HRTIMER:          0          0          0          0          0          0
         RCU:  690827224  504025610  464412234  246695846  254062933  248859132

其中 NET_RX,CPU0 的中断次数远远大于其他 CPU,初步判断是网卡问题。

我这边网卡是 ens32,查看网卡的中断号:

[root@eureka2 imf2]# cat /proc/interrupts | grep ens
 18: 2524017495          0          0          0          0          7   IO-APIC-fasteoi   ens32
[root@eureka2 imf2]# cat /proc/irq/18/smp_affinity
01
[root@eureka2 imf2]# cat /proc/irq/18/smp_affinity_list
0

网卡的中断配置到了 CPU0。(01:表示 cpu0,02:cpu1,04:cpu2,08:cpu3,10:cpu4,20:cpu5)

smp_affinity:16 进制;smp_affinity_list:配置到了哪些 cpu。

查看网卡队列模式:

[root@eureka2 ~]# lspci -vvv
02:00.0 Ethernet controller: Intel Corporation 82545EM Gigabit Ethernet Controller (Copper) (rev 01)
    Subsystem: VMware PRO/1000 MT Single Port Adapter
    Physical Slot: 32
    Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV+ VGASnoop- ParErr- Stepping- SERR+ FastB2B- DisINTx-
    Status: Cap+ 66MHz+ UDF- FastB2B- ParErr- DEVSEL=medium >TAbort- SERR- 

由于是单队列模式,所以通过修改 /proc/irq/18/smp_affinity 的值不能生效。

可以通过 RPS/RFS 在软件层面模拟多队列网卡功能。

[root@eureka2 ~]# echo 3e > /sys/class/net/ens32/queues/rx-0/rps_cpus
[root@eureka2 rx-0]# sysctl net.core.rps_sock_flow_entries=32768
[root@eureka2 rx-0]# echo 32768 > /sys/class/net/ens32/queues/rx-0/rps_flow_cnt

/sys/class/net/ens32/queues/rx-0/rps_cpus: 1e,设置模拟网卡中断分配到 cpu1-5 上。

继续测试,

[root@hystrix-dashboard wrk]# wrk -t 10 -c 500 -d 30s -T 3s -s post-test.lua --latency "http://10.201.0.27:8888/api/v1/json"
Running 30s test @ http://10.201.0.27:8888/api/v1/json
  10 threads and 500 connections
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency   146.75ms  108.45ms   1.01s    65.53%
    Req/Sec   367.80     64.55   575.00     67.93%
  Latency Distribution
     50%  130.93ms
     75%  200.72ms
     90%  290.32ms
     99%  493.84ms
  109922 requests in 30.02s, 35.56MB read
Requests/sec:   3661.21
Transfer/sec:      1.18MB
[root@eureka2 rx-0]# top -Hp 19021
top - 09:39:49 up 164 days, 12:03,  1 user,  load average: 2.76, 2.02, 1.22
Threads: 559 total,   9 running, 550 sleeping,   0 stopped,   0 zombie
%Cpu0  : 55.1 us, 13.0 sy,  0.0 ni, 17.5 id,  0.0 wa,  0.0 hi, 14.4 si,  0.0 st
%Cpu1  : 60.1 us, 14.0 sy,  0.0 ni, 22.5 id,  0.0 wa,  0.0 hi,  3.4 si,  0.0 st
%Cpu2  : 59.5 us, 14.3 sy,  0.0 ni, 22.4 id,  0.0 wa,  0.0 hi,  3.7 si,  0.0 st
%Cpu3  : 58.6 us, 15.2 sy,  0.0 ni, 22.2 id,  0.0 wa,  0.0 hi,  4.0 si,  0.0 st
%Cpu4  : 59.1 us, 14.8 sy,  0.0 ni, 22.7 id,  0.0 wa,  0.0 hi,  3.4 si,  0.0 st
%Cpu5  : 57.7 us, 16.2 sy,  0.0 ni, 23.0 id,  0.0 wa,  0.0 hi,  3.1 si,  0.0 st
KiB Mem :  7677696 total,   373940 free,  3217180 used,  4086576 buff/cache
KiB Swap:  6291452 total,  6291452 free,        0 used.  3533812 avail Mem

  PID USER      PR  NI    VIRT    RES    SHR S %CPU %MEM     TIME+ COMMAND
19060 root      20   0 7415812   1.2g  13384 S 40.7 16.7   3:23.05 java
19073 root      20   0 7415812   1.2g  13384 R 40.1 16.7   3:20.56 java
19365 root      20   0 7415812   1.2g  13384 R 40.1 16.7   2:36.65 java

可以看到软中断也分配到了 cpu1-5 上;至于为什么还是 cpu0 上软中断比例最高,猜测是因为还有一些其他中断并且默认配置在 cpu0 上?

同时,tps 也从 3400 -> 3600,提升不大。

2.4 增加 redis 连接

经过以上修改,cup 利用率还是不超过 500%,说明在某些地方还是存在瓶颈。

尝试修改了下 lettuce 连接池,

spring:
  redis:
    database: x
    host: x.x.x.x
    port: 6379
    lettuce:
      pool:
        max-active: 18
        min-idle: 1
        max-idle: 18

主要是把 max-active 参数 6 增大到了 18,继续测试:

[root@hystrix-dashboard wrk]# wrk -t 10 -c 500 -d 120s -T 3s -s post-test.lua --latency "http://10.201.0.27:8888/api/v1/json"
Running 2m test @ http://10.201.0.27:8888/api/v1/json
  10 threads and 500 connections
  Thread Stats   Avg      Stdev     Max   +/- Stdev
    Latency   117.66ms   96.72ms   1.34s    86.48%
    Req/Sec   485.42     90.41   790.00     70.80%
  Latency Distribution
     50%   90.04ms
     75%  156.01ms
     90%  243.63ms
     99%  464.04ms
  578298 requests in 2.00m, 187.01MB read
Requests/sec:   4815.57
Transfer/sec:      1.56MB

6 核 cpu 几乎跑满,同时 tps 也从 3600 -> 4800,提升明显!

这说明之前的瓶颈出在 redis 连接上,那么如何判断 tcp 连接是瓶颈呢?(尝试通过 ss、netstat 等命令查看 tcp 发送缓冲区、接收缓冲区、半连接队列、全连接队列等,未发现问题。先放着,以后在研究)

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/73051.html

相关文章

  • Java学习路线总结,搬砖工逆袭Java架构师(全网最强)

    摘要:哪吒社区技能树打卡打卡贴函数式接口简介领域优质创作者哪吒公众号作者架构师奋斗者扫描主页左侧二维码,加入群聊,一起学习一起进步欢迎点赞收藏留言前情提要无意间听到领导们的谈话,现在公司的现状是码农太多,但能独立带队的人太少,简而言之,不缺干 ? 哪吒社区Java技能树打卡 【打卡贴 day2...

    Scorpion 评论0 收藏0
  • Javag工程师成神之路(2019正式版)

    摘要:结构型模式适配器模式桥接模式装饰模式组合模式外观模式享元模式代理模式。行为型模式模版方法模式命令模式迭代器模式观察者模式中介者模式备忘录模式解释器模式模式状态模式策略模式职责链模式责任链模式访问者模式。 主要版本 更新时间 备注 v1.0 2015-08-01 首次发布 v1.1 2018-03-12 增加新技术知识、完善知识体系 v2.0 2019-02-19 结构...

    Olivia 评论0 收藏0
  • 【推荐】最新200篇:技术文章整理

    摘要:作为面试官,我是如何甄别应聘者的包装程度语言和等其他语言的对比分析和主从复制的原理详解和持久化的原理是什么面试中经常被问到的持久化与恢复实现故障恢复自动化详解哨兵技术查漏补缺最易错过的技术要点大扫盲意外宕机不难解决,但你真的懂数据恢复吗每秒 作为面试官,我是如何甄别应聘者的包装程度Go语言和Java、python等其他语言的对比分析 Redis和MySQL Redis:主从复制的原理详...

    BicycleWarrior 评论0 收藏0
  • 【推荐】最新200篇:技术文章整理

    摘要:作为面试官,我是如何甄别应聘者的包装程度语言和等其他语言的对比分析和主从复制的原理详解和持久化的原理是什么面试中经常被问到的持久化与恢复实现故障恢复自动化详解哨兵技术查漏补缺最易错过的技术要点大扫盲意外宕机不难解决,但你真的懂数据恢复吗每秒 作为面试官,我是如何甄别应聘者的包装程度Go语言和Java、python等其他语言的对比分析 Redis和MySQL Redis:主从复制的原理详...

    tommego 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<