Problem
Design a Tic-tac-toe game that is played between two players on a n x n grid.
You may assume the following rules:
A move is guaranteed to be valid and is placed on an empty block.
Once a winning condition is reached, no more moves is allowed.
A player who succeeds in placing n of their marks in a horizontal, vertical, or diagonal row wins the game.
Example:
Given n = 3, assume that player 1 is "X" and player 2 is "O" in the board. TicTacToe toe = new TicTacToe(3); toe.move(0, 0, 1); -> Returns 0 (no one wins) |X| | | | | | | // Player 1 makes a move at (0, 0). | | | | toe.move(0, 2, 2); -> Returns 0 (no one wins) |X| |O| | | | | // Player 2 makes a move at (0, 2). | | | | toe.move(2, 2, 1); -> Returns 0 (no one wins) |X| |O| | | | | // Player 1 makes a move at (2, 2). | | |X| toe.move(1, 1, 2); -> Returns 0 (no one wins) |X| |O| | |O| | // Player 2 makes a move at (1, 1). | | |X| toe.move(2, 0, 1); -> Returns 0 (no one wins) |X| |O| | |O| | // Player 1 makes a move at (2, 0). |X| |X| toe.move(1, 0, 2); -> Returns 0 (no one wins) |X| |O| |O|O| | // Player 2 makes a move at (1, 0). |X| |X| toe.move(2, 1, 1); -> Returns 1 (player 1 wins) |X| |O| |O|O| | // Player 1 makes a move at (2, 1). |X|X|X|
Follow up:
Could you do better than O(n2) per move() operation?
class TicTacToe { private int[] rows; private int[] cols; private int diagonal; private int antiDiagonal; private int size; /** Initialize your data structure here. */ public TicTacToe(int n) { rows = new int[n]; cols = new int[n]; diagonal = 0; antiDiagonal = 0; size = n; } /** Player {player} makes a move at ({row}, {col}). @param row The row of the board. @param col The column of the board. @param player The player, can be either 1 or 2. @return The current winning condition, can be either: 0: No one wins. 1: Player 1 wins. 2: Player 2 wins. */ public int move(int row, int col, int player) { int num = player == 1 ? 1 : -1; rows[row] += num; cols[col] += num; if (row == col) diagonal += num; if (row == size-1-col) antiDiagonal += num; if (Math.abs(rows[row]) == size || Math.abs(cols[col]) == size || Math.abs(diagonal) == size || Math.abs(antiDiagonal) == size) return player; return 0; } }
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/72457.html
摘要:题目链接这道题找是否有赢的方法和相似,稍微简化了。统计行列和两个对角线的情况,两个分别用和来记。然后判断是否有一个人赢只需要的复杂度。当然这么做的前提是假设所有的都是的,棋盘一个地方已经被占用了,就不能走那个地方了。 348. Design Tic-Tac-Toe 题目链接:https://leetcode.com/problems... 这道题找是否有player赢的方法和N-Que...
摘要:当有一行完全只有这两个中的其中一个人时,的绝对值应该等于这个数列的长度,这样就不需要每次再扫一遍数组。 题目:Design a Tic-tac-toe game that is played between two players on a n x n grid. You may assume the following rules: A move is guaranteed to b...
摘要:我们在前文中考虑的那张图就来自这篇文章,之后我们会用剪枝算法来改进之前的解决方案。剪枝算法的实现接下来讨论如何修改前面实现的算法,使其变为剪枝算法。现在我们已经有了现成的和剪枝算法,只要加上一点儿细节就能完成这个游戏了。 前段时间用 React 写了个2048 游戏来练练手,准备用来回顾下 React 相关的各种技术,以及试验一下新技术。在写这个2048的过程中,我考虑是否可以在其中加...
摘要:我们在前文中考虑的那张图就来自这篇文章,之后我们会用剪枝算法来改进之前的解决方案。剪枝算法的实现接下来讨论如何修改前面实现的算法,使其变为剪枝算法。现在我们已经有了现成的和剪枝算法,只要加上一点儿细节就能完成这个游戏了。 前段时间用 React 写了个2048 游戏来练练手,准备用来回顾下 React 相关的各种技术,以及试验一下新技术。在写这个2048的过程中,我考虑是否可以在其中加...
摘要:题目链接题目分析设计一个哈希类。需要有添加元素函数,判断元素存在的函数,移除元素函数。思路这真的没什么好说的了我把要存的值作为数组的键存储。最终代码若觉得本文章对你有用,欢迎用爱发电资助。 D87 705. Design HashSet 题目链接 705. Design HashSet 题目分析 设计一个哈希类。 需要有add添加元素函数,contains判断元素存在的函数,remov...
阅读 1599·2019-08-30 13:18
阅读 1583·2019-08-29 12:19
阅读 2126·2019-08-26 13:57
阅读 4150·2019-08-26 13:22
阅读 1191·2019-08-26 10:35
阅读 2996·2019-08-23 18:09
阅读 2515·2019-08-23 17:19
阅读 688·2019-08-23 17:18