资讯专栏INFORMATION COLUMN

【面试篇】寒冬求职季之你必须要懂的原生JS(中)

andycall / 3091人阅读

摘要:如果你还没读过上篇上篇和中篇并无依赖关系,您可以读过本文之后再阅读上篇,可戳面试篇寒冬求职季之你必须要懂的原生上小姐姐花了近百个小时才完成这篇文章,篇幅较长,希望大家阅读时多花点耐心,力求真正的掌握相关知识点。

互联网寒冬之际,各大公司都缩减了HC,甚至是采取了“裁员”措施,在这样的大环境之下,想要获得一份更好的工作,必然需要付出更多的努力。

一年前,也许你搞清楚闭包,this,原型链,就能获得认可。但是现在,很显然是不行了。本文梳理出了一些面试中有一定难度的高频原生JS问题,部分知识点可能你之前从未关注过,或者看到了,却没有仔细研究,但是它们却非常重要。

本文将以真实的面试题的形式来呈现知识点,大家在阅读时,建议不要先看我的答案,而是自己先思考一番。尽管,本文所有的答案,都是我在翻阅各种资料,思考并验证之后,才给出的(绝非复制粘贴而来)。但因水平有限,本人的答案未必是最优的,如果您有更好的答案,欢迎在 issue 中留言。

本文篇幅较长,但是满满的都是干货!并且还埋伏了可爱的表情包,希望小伙伴们能够坚持读完。

写文超级真诚的小姐姐祝愿大家都能找到心仪的工作。

如果你还没读过上篇【上篇和中篇并无依赖关系,您可以读过本文之后再阅读上篇】,可戳【面试篇】寒冬求职季之你必须要懂的原生JS(上)

小姐姐花了近百个小时才完成这篇文章,篇幅较长,希望大家阅读时多花点耐心,力求真正的掌握相关知识点。

1.说一说JS异步发展史

异步最早的解决方案是回调函数,如事件的回调,setInterval/setTimeout中的回调。但是回调函数有一个很常见的问题,就是回调地狱的问题(稍后会举例说明);

为了解决回调地狱的问题,社区提出了Promise解决方案,ES6将其写进了语言标准。Promise解决了回调地狱的问题,但是Promise也存在一些问题,如错误不能被try catch,而且使用Promise的链式调用,其实并没有从根本上解决回调地狱的问题,只是换了一种写法。

ES6中引入 Generator 函数,Generator是一种异步编程解决方案,Generator 函数是协程在 ES6 的实现,最大特点就是可以交出函数的执行权,Generator 函数可以看出是异步任务的容器,需要暂停的地方,都用yield语句注明。但是 Generator 使用起来较为复杂。

ES7又提出了新的异步解决方案:async/await,async是 Generator 函数的语法糖,async/await 使得异步代码看起来像同步代码,异步编程发展的目标就是让异步逻辑的代码看起来像同步一样。

1.回调函数: callback

//node读取文件
fs.readFile(xxx, "utf-8", function(err, data) {
    //code
});

回调函数的使用场景(包括但不限于):

    事件回调

    Node API

    setTimeout/setInterval中的回调函数

异步回调嵌套会导致代码难以维护,并且不方便统一处理错误,不能try catch 和 回调地狱(如先读取A文本内容,再根据A文本内容读取B再根据B的内容读取C...)。

fs.readFile(A, "utf-8", function(err, data) {
    fs.readFile(B, "utf-8", function(err, data) {
        fs.readFile(C, "utf-8", function(err, data) {
            fs.readFile(D, "utf-8", function(err, data) {
                //....
            });
        });
    });
});

2.Promise

Promise 主要解决了回调地狱的问题,Promise 最早由社区提出和实现,ES6 将其写进了语言标准,统一了用法,原生提供了Promise对象。

那么我们看看Promise是如何解决回调地狱问题的,仍然以上文的readFile为例。

function read(url) {
    return new Promise((resolve, reject) => {
        fs.readFile(url, "utf8", (err, data) => {
            if(err) reject(err);
            resolve(data);
        });
    });
}
read(A).then(data => {
    return read(B);
}).then(data => {
    return read(C);
}).then(data => {
    return read(D);
}).catch(reason => {
    console.log(reason);
});

想要运行代码看效果,请戳(小姐姐使用的是VS的 Code Runner 执行代码): github.com/YvetteLau/B…

思考一下在Promise之前,你是如何处理异步并发问题的,假设有这样一个需求:读取三个文件内容,都读取成功后,输出最终的结果。有了Promise之后,又如何处理呢?代码可戳: github.com/YvetteLau/B…

注: 可以使用 bluebird 将接口 promise化;

引申: Promise有哪些优点和问题呢?

3.Generator

Generator 函数是 ES6 提供的一种异步编程解决方案,整个 Generator 函数就是一个封装的异步任务,或者说是异步任务的容器。异步操作需要暂停的地方,都用 yield 语句注明。

Generator 函数一般配合 yield 或 Promise 使用。Generator函数返回的是迭代器。对生成器和迭代器不了解的同学,请自行补习下基础。下面我们看一下 Generator 的简单使用:

function* gen() {
    let a = yield 111;
    console.log(a);
    let b = yield 222;
    console.log(b);
    let c = yield 333;
    console.log(c);
    let d = yield 444;
    console.log(d);
}
let t = gen();
//next方法可以带一个参数,该参数就会被当作上一个yield表达式的返回值
t.next(1); //第一次调用next函数时,传递的参数无效
t.next(2); //a输出2;
t.next(3); //b输出3; 
t.next(4); //c输出4;
t.next(5); //d输出5;

为了让大家更好的理解上面代码是如何执行的,我画了一张图,分别对应每一次的next方法调用:

仍然以上文的readFile为例,使用 Generator + co库来实现:

const fs = require("fs");
const co = require("co");
const bluebird = require("bluebird");
const readFile = bluebird.promisify(fs.readFile);

function* read() {
    yield readFile(A, "utf-8");
    yield readFile(B, "utf-8");
    yield readFile(C, "utf-8");
    //....
}
co(read()).then(data => {
    //code
}).catch(err => {
    //code
});

不使用co库,如何实现?能否自己写一个最简的my_co?请戳: github.com/YvetteLau/B…

PS: 如果你还不太了解 Generator/yield,建议阅读ES6相关文档。

4.async/await

ES7中引入了 async/await 概念。async其实是一个语法糖,它的实现就是将Generator函数和自动执行器(co),包装在一个函数中。

async/await 的优点是代码清晰,不用像 Promise 写很多 then 链,就可以处理回调地狱的问题。错误可以被try catch。

const fs = require("fs");
const bluebird = require("bluebird");
const readFile = bluebird.promisify(fs.readFile);


async function read() {
    await readFile(A, "utf-8");
    await readFile(B, "utf-8");
    await readFile(C, "utf-8");
    //code
}

read().then((data) => {
    //code
}).catch(err => {
    //code
});

可执行代码,请戳:github.com/YvetteLau/B…

思考一下 async/await 如何处理异步并发问题的? github.com/YvetteLau/B…

如果你有更好的答案或想法,欢迎在这题目对应的github下留言:说一说JS异步发展史


2.谈谈对 async/await 的理解,async/await 的实现原理是什么");

async/await 就是 Generator 的语法糖,使得异步操作变得更加方便。来张图对比一下:

async 函数就是将 Generator 函数的星号(*)替换成 async,将 yield 替换成await。

我们说 async 是 Generator 的语法糖,那么这个糖究竟甜在哪呢?

1)async函数内置执行器,函数调用之后,会自动执行,输出最后结果。而Generator需要调用next或者配合co模块使用。

2)更好的语义,async和await,比起星号和yield,语义更清楚了。async表示函数里有异步操作,await表示紧跟在后面的表达式需要等待结果。

3)更广的适用性。co模块约定,yield命令后面只能是 Thunk 函数或 Promise 对象,而async 函数的 await 命令后面,可以是 Promise 对象和原始类型的值。

4)返回值是Promise,async函数的返回值是 Promise 对象,Generator的返回值是 Iterator,Promise 对象使用起来更加方便。

async 函数的实现原理,就是将 Generator 函数和自动执行器,包装在一个函数里。

具体代码试下如下(和spawn的实现略有差异,个人觉得这样写更容易理解),如果你想知道如何一步步写出 my_co ,可戳: github.com/YvetteLau/B…

function my_co(it) {
    return new Promise((resolve, reject) => {
        function next(data) {
            try {
                var { value, done } = it.next(data);
            }catch(e){
                return reject(e);
            }
            if (!done) { 
                //done为true,表示迭代完成
                //value 不一定是 Promise,可能是一个普通值。使用 Promise.resolve 进行包装。
                Promise.resolve(value).then(val => {
                    next(val);
                }, reject);
            } else {
                resolve(value);
            }
        }
        next(); //执行一次next
    });
}
function* test() {
    yield new Promise((resolve, reject) => {
        setTimeout(resolve, 100);
    });
    yield new Promise((resolve, reject) => {
        // throw Error(1);
        resolve(10)
    });
    yield 10;
    return 1000;
}

my_co(test()).then(data => {
    console.log(data); //输出1000
}).catch((err) => {
    console.log("err: ", err);
});

如果你有更好的答案或想法,欢迎在这题目对应的github下留言:谈谈对 async/await 的理解,async/await 的实现原理是什么");


3.使用 async/await 需要注意什么?

    await 命令后面的Promise对象,运行结果可能是 rejected,此时等同于 async 函数返回的 Promise 对象被reject。因此需要加上错误处理,可以给每个 await 后的 Promise 增加 catch 方法;也可以将 await 的代码放在 try...catch 中。

    多个await命令后面的异步操作,如果不存在继发关系,最好让它们同时触发。

//下面两种写法都可以同时触发
//法一
async function f1() {
    await Promise.all([
        new Promise((resolve) => {
            setTimeout(resolve, 600);
        }),
        new Promise((resolve) => {
            setTimeout(resolve, 600);
        })
    ])
}
//法二
async function f2() {
    let fn1 = new Promise((resolve) => {
            setTimeout(resolve, 800);
        });
    
    let fn2 = new Promise((resolve) => {
            setTimeout(resolve, 800);
        })
    await fn1;
    await fn2;
}

    await命令只能用在async函数之中,如果用在普通函数,会报错。

    async 函数可以保留运行堆栈。

/**
* 函数a内部运行了一个异步任务b()。当b()运行的时候,函数a()不会中断,而是继续执行。
* 等到b()运行结束,可能a()早就* 运行结束了,b()所在的上下文环境已经消失了。
* 如果b()或c()报错,错误堆栈将不包括a()。
*/
function b() {
    return new Promise((resolve, reject) => {
        setTimeout(resolve, 200)
    });
}
function c() {
    throw Error(10);
}
const a = () => {
    b().then(() => c());
};
a();
/**
* 改成async函数
*/
const m = async () => {
    await b();
    c();
};
m();

报错信息如下,可以看出 async 函数可以保留运行堆栈。

如果你有更好的答案或想法,欢迎在这题目对应的github下留言:使用 async/await 需要注意什么?


4.如何实现 Promise.race?

在代码实现前,我们需要先了解 Promise.race 的特点:

    Promise.race返回的仍然是一个Promise. 它的状态与第一个完成的Promise的状态相同。它可以是完成( resolves),也可以是失败(rejects),这要取决于第一个Promise是哪一种状态。

    如果传入的参数是不可迭代的,那么将会抛出错误。

    如果传的参数数组是空,那么返回的 promise 将永远等待。

    如果迭代包含一个或多个非承诺值和/或已解决/拒绝的承诺,则 Promise.race 将解析为迭代中找到的第一个值。

Promise.race = function (promises) {
    //promises 必须是一个可遍历的数据结构,否则抛错
    return new Promise((resolve, reject) => {
        if (typeof promises[Symbol.iterator] !== "function") {
            //真实不是这个错误
            Promise.reject("args is not iteratable!");
        }
        if (promises.length === 0) {
            return;
        } else {
            for (let i = 0; i < promises.length; i++) {
                Promise.resolve(promises[i]).then((data) => {
                    resolve(data);
                    return;
                }, (err) => {
                    reject(err);
                    return;
                });
            }
        }
    });
}

测试代码:

//一直在等待态
Promise.race([]).then((data) => {
    console.log("success ", data);
}, (err) => {
    console.log("err ", err);
});
//抛错
Promise.race().then((data) => {
    console.log("success ", data);
}, (err) => {
    console.log("err ", err);
});
Promise.race([
    new Promise((resolve, reject) => { setTimeout(() => { resolve(100) }, 1000) }),
    new Promise((resolve, reject) => { setTimeout(() => { resolve(200) }, 200) }),
    new Promise((resolve, reject) => { setTimeout(() => { reject(100) }, 100) })
]).then((data) => {
    console.log(data);
}, (err) => {
    console.log(err);
});

引申: Promise.all/Promise.reject/Promise.resolve/Promise.prototype.finally/Promise.prototype.catch 的实现原理,如果还不太会,戳:Promise源码实现

如果你有更好的答案或想法,欢迎在这题目对应的github下留言:如何实现 Promise.race?


5.可遍历数据结构的有什么特点?

一个对象如果要具备可被 for...of 循环调用的 Iterator 接口,就必须在其 Symbol.iterator 的属性上部署遍历器生成方法(或者原型链上的对象具有该方法)

PS: 遍历器对象根本特征就是具有next方法。每次调用next方法,都会返回一个代表当前成员的信息对象,具有value和done两个属性。

//如为对象添加Iterator 接口;
let obj = {
    name: "Yvette",
    age: 18,
    job: "engineer",
    [Symbol.iterator]() {
        const self = this;
        const keys = Object.keys(self);
        let index = 0;
        return {
            next() {
                if (index < keys.length) {
                    return {
                        value: self[keys[index++]],
                        done: false
                    };
                } else {
                    return { value: undefined, done: true };
                }
            }
        };
    }
};

for(let item of obj) {
    console.log(item); //Yvette  18  engineer
}

使用 Generator 函数(遍历器对象生成函数)简写 Symbol.iterator 方法,可以简写如下:

let obj = {
    name: "Yvette",
    age: 18,
    job: "engineer",
    * [Symbol.iterator] () {
        const self = this;
        const keys = Object.keys(self);
        for (let index = 0;index < keys.length; index++) {
            yield self[keys[index]];//yield表达式仅能使用在 Generator 函数中
        } 
    }
};

原生具备 Iterator 接口的数据结构如下。

Array

Map

Set

String

TypedArray

函数的 arguments 对象

NodeList 对象

ES6 的数组、Set、Map 都部署了以下三个方法: entries() / keys() / values(),调用后都返回遍历器对象。

如果你有更好的答案或想法,欢迎在这题目对应的github下留言:可遍历数据结构的有什么特点?


6.requestAnimationFrame 和 setTimeout/setInterval 有什么区别?使用 requestAnimationFrame 有哪些好处?

在 requestAnimationFrame 之前,我们主要使用 setTimeout/setInterval 来编写JS动画。

编写动画的关键是循环间隔的设置,一方面,循环间隔足够短,动画效果才能显得平滑流畅;另一方面,循环间隔还要足够长,才能确保浏览器有能力渲染产生的变化。

大部分的电脑显示器的刷新频率是60HZ,也就是每秒钟重绘60次。大多数浏览器都会对重绘操作加以限制,不超过显示器的重绘频率,因为即使超过那个频率用户体验也不会提升。因此,最平滑动画的最佳循环间隔是 1000ms / 60 ,约为16.7ms。

setTimeout/setInterval 有一个显著的缺陷在于时间是不精确的,setTimeout/setInterval 只能保证延时或间隔不小于设定的时间。因为它们实际上只是把任务添加到了任务队列中,但是如果前面的任务还没有执行完成,它们必须要等待。

requestAnimationFrame 才有的是系统时间间隔,保持最佳绘制效率,不会因为间隔时间过短,造成过度绘制,增加开销;也不会因为间隔时间太长,使用动画卡顿不流畅,让各种网页动画效果能够有一个统一的刷新机制,从而节省系统资源,提高系统性能,改善视觉效果。

综上所述,requestAnimationFrame 和 setTimeout/setInterval 在编写动画时相比,优点如下:

1.requestAnimationFrame 不需要设置时间,采用系统时间间隔,能达到最佳的动画效果。

2.requestAnimationFrame 会把每一帧中的所有DOM操作集中起来,在一次重绘或回流中就完成。

3.当 requestAnimationFrame() 运行在后台标签页或者隐藏的