摘要:原文链接深入理解系列一基本概念是的一项功能它是在一个系统中运行的层级制进程组,你可对其进行资源分配如时间系统内存网络带宽或者这些资源的组合。
原文链接:深入理解 Linux Cgroup 系列(一):基本概念
Cgroup 是 Linux kernel 的一项功能:它是在一个系统中运行的层级制进程组,你可对其进行资源分配(如 CPU 时间、系统内存、网络带宽或者这些资源的组合)。通过使用 cgroup,系统管理员在分配、排序、拒绝、管理和监控系统资源等方面,可以进行精细化控制。硬件资源可以在应用程序和用户间智能分配,从而增加整体效率。
cgroup 和 namespace 类似,也是将进程进行分组,但它的目的和 namespace 不一样,namespace 是为了隔离进程组之间的资源,而 cgroup 是为了对一组进程进行统一的资源监控和限制。
cgroup 分 v1 和 v2 两个版本,v1 实现较早,功能比较多,但是由于它里面的功能都是零零散散的实现的,所以规划的不是很好,导致了一些使用和维护上的不便,v2 的出现就是为了解决 v1 中这方面的问题,在最新的 4.5 内核中,cgroup v2 声称已经可以用于生产环境了,但它所支持的功能还很有限,随着 v2 一起引入内核的还有 cgroup namespace。v1 和 v2 可以混合使用,但是这样会更复杂,所以一般没人会这样用。
1. 为什么需要 cgroup在 Linux 里,一直以来就有对进程进行分组的概念和需求,比如 session group, progress group 等,后来随着人们对这方面的需求越来越多,比如需要追踪一组进程的内存和 IO 使用情况等,于是出现了 cgroup,用来统一将进程进行分组,并在分组的基础上对进程进行监控和资源控制管理等。
2. 什么是 cgroup术语 cgroup 在不同的上下文中代表不同的意思,可以指整个 Linux 的 cgroup 技术,也可以指一个具体进程组。
cgroup 是 Linux 下的一种将进程按组进行管理的机制,在用户层看来,cgroup 技术就是把系统中的所有进程组织成一颗一颗独立的树,每棵树都包含系统的所有进程,树的每个节点是一个进程组,而每颗树又和一个或者多个 subsystem 关联,树的作用是将进程分组,而 subsystem 的作用就是对这些组进行操作。cgroup 主要包括下面两部分:
subsystem : 一个 subsystem 就是一个内核模块,他被关联到一颗 cgroup 树之后,就会在树的每个节点(进程组)上做具体的操作。subsystem 经常被称作 resource controller,因为它主要被用来调度或者限制每个进程组的资源,但是这个说法不完全准确,因为有时我们将进程分组只是为了做一些监控,观察一下他们的状态,比如 perf_event subsystem。到目前为止,Linux 支持 12 种 subsystem,比如限制 CPU 的使用时间,限制使用的内存,统计 CPU 的使用情况,冻结和恢复一组进程等,后续会对它们一一进行介绍。
hierarchy : 一个 hierarchy 可以理解为一棵 cgroup 树,树的每个节点就是一个进程组,每棵树都会与零到多个 subsystem 关联。在一颗树里面,会包含 Linux 系统中的所有进程,但每个进程只能属于一个节点(进程组)。系统中可以有很多颗 cgroup 树,每棵树都和不同的 subsystem 关联,一个进程可以属于多颗树,即一个进程可以属于多个进程组,只是这些进程组和不同的 subsystem 关联。目前 Linux 支持 12 种 subsystem,如果不考虑不与任何 subsystem 关联的情况(systemd 就属于这种情况),Linux 里面最多可以建 12 颗 cgroup 树,每棵树关联一个 subsystem,当然也可以只建一棵树,然后让这棵树关联所有的 subsystem。当一颗 cgroup 树不和任何 subsystem 关联的时候,意味着这棵树只是将进程进行分组,至于要在分组的基础上做些什么,将由应用程序自己决定,systemd 就是一个这样的例子。
3. 将资源看作一块饼在 CentOS 7 系统中(包括 Red Hat Enterprise Linux 7),通过将 cgroup 层级系统与 systemd 单位树捆绑,可以把资源管理设置从进程级别移至应用程序级别。默认情况下,systemd 会自动创建 slice、scope 和 service 单位的层级(具体的意思稍后再解释),来为 cgroup 树提供统一结构。可以通过 systemctl 命令创建自定义 slice 进一步修改此结构。
如果我们将系统的资源看成一块馅饼,那么所有资源默认会被划分为 3 个 cgroup:System, User 和 Machine。每一个 cgroup 都是一个 slice,每个 slice 都可以有自己的子 slice,如下图所示:
下面我们以 CPU 资源为例,来解释一下上图中出现的一些关键词。
如上图所示,系统默认创建了 3 个顶级 slice(System, User 和 Machine),每个 slice 都会获得相同的 CPU 使用时间(仅在 CPU 繁忙时生效),如果 user.slice 想获得 100% 的 CPU 使用时间,而此时 CPU 比较空闲,那么 user.slice 就能够如愿以偿。这三种顶级 slice 的含义如下:
system.slice —— 所有系统 service 的默认位置
user.slice —— 所有用户会话的默认位置。每个用户会话都会在该 slice 下面创建一个子 slice,如果同一个用户多次登录该系统,仍然会使用相同的子 slice。
machine.slice —— 所有虚拟机和 Linux 容器的默认位置
控制 CPU 资源使用的其中一种方法是 shares。shares 用来设置 CPU 的相对值(你可以理解为权重),并且是针对所有的 CPU(内核),默认值是 1024。因此在上图中,httpd, sshd, crond 和 gdm 的 CPU shares 均为 1024,System, User 和 Machine 的 CPU shares 也是 1024。
假设该系统上运行了 4 个 service,登录了两个用户,还运行了一个虚拟机。同时假设每个进程都要求使用尽可能多的 CPU 资源(每个进程都很繁忙)。
system.slice 会获得 33.333% 的 CPU 使用时间,其中每个 service 都会从 system.slice 分配的资源中获得 1/4 的 CPU 使用时间,即 8.25% 的 CPU 使用时间。
user.slice 会获得 33.333% 的 CPU 使用时间,其中每个登录的用户都会获得 16.5% 的 CPU 使用时间。假设有两个用户:tom 和 jack,如果 tom 注销登录或者杀死该用户会话下的所有进程,jack 就能够使用 33.333% 的 CPU 使用时间。
machine.slice 会获得 33.333% 的 CPU 使用时间,如果虚拟机被关闭或处于 idle 状态,那么 system.slice 和 user.slice 就会从这 33.333% 的 CPU 资源里分别获得 50% 的 CPU 资源,然后均分给它们的子 slice。
如果想严格控制 CPU 资源,设置 CPU 资源的使用上限,即不管 CPU 是否繁忙,对 CPU 资源的使用都不能超过这个上限。可以通过以下两个参数来设置:
cpu.cfs_period_us = 统计CPU使用时间的周期,单位是微秒(us) cpu.cfs_quota_us = 周期内允许占用的CPU时间(指单核的时间,多核则需要在设置时累加)
systemctl 可以通过 CPUQuota 参数来设置 CPU 资源的使用上限。例如,如果你想将用户 tom 的 CPU 资源使用上限设置为 20%,可以执行以下命令:
$ systemctl set-property user-1000.slice CPUQuota=20%
在使用命令 systemctl set-property 时,可以使用 tab 补全:
$ systemctl set-property user-1000.slice
AccuracySec= CPUAccounting= Environment= LimitCPU= LimitNICE= LimitSIGPENDING= SendSIGKILL=
BlockIOAccounting= CPUQuota= Group= LimitDATA= LimitNOFILE= LimitSTACK= User=
BlockIODeviceWeight= CPUShares= KillMode= LimitFSIZE= LimitNPROC= MemoryAccounting= WakeSystem=
BlockIOReadBandwidth= DefaultDependencies= KillSignal= LimitLOCKS= LimitRSS= MemoryLimit=
BlockIOWeight= DeviceAllow= LimitAS= LimitMEMLOCK= LimitRTPRIO= Nice=
BlockIOWriteBandwidth= DevicePolicy= LimitCORE= LimitMSGQUEUE= LimitRTTIME= SendSIGHUP=
这里有很多属性可以设置,但并不是所有的属性都是用来设置 cgroup 的,我们只需要关注 Block, CPU 和 Memory。
如果你想通过配置文件来设置 cgroup,service 可以直接在 /etc/systemd/system/xxx.service.d 目录下面创建相应的配置文件,slice 可以直接在 /run/systemd/system/xxx.slice.d 目录下面创建相应的配置文件。事实上通过 systemctl 命令行工具设置 cgroup 也会写到该目录下的配置文件中:
$ cat /run/systemd/system/user-1000.slice.d/50-CPUQuota.conf [Slice] CPUQuota=20%
查看对应的 cgroup 参数:
$ cat /sys/fs/cgroup/cpu,cpuacct/user.slice/user-1000.slice/cpu.cfs_period_us 100000 $ cat /sys/fs/cgroup/cpu,cpuacct/user.slice/user-1000.slice/cpu.cfs_quota_us 20000
这表示用户 tom 在一个使用周期内(100 毫秒)可以使用 20 毫秒的 CPU 时间。不管 CPU 是否空闲,该用户使用的 CPU 资源都不会超过这个限制。
{{% notice note %}} CPUQuota 的值可以超过 100%,例如:如果系统的 CPU 是多核,且 CPUQuota 的值为 200%,那么该 slice 就能够使用 2 核的 CPU 时间。 {{% /notice %}}
4. 总结本文主要介绍了 cgroup 的一些基本概念,包括其在 CentOS 系统中的默认设置和控制工具,以 CPU 为例阐述 cgroup 如何对资源进行控制。下一篇文章将会通过具体的示例来观察不同的 cgroup 设置对性能的影响。
5. 参考资料Linux Cgroup系列(01):Cgroup概述
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/7207.html
摘要:一般的硬件虚拟化方法给出的方法是,而给出的方法是,更细一点讲就是。在中,并不能像硬件虚拟化方案一样能够定义能力,但是能够定义轮转的优先级,因此具有较高优先级的进程会更可能得到运算。 本文简单介绍docker使用到的部分核心技术,但不做深入探究,因为每一个技术都是一个独立的项目,有机会再分别详细介绍。 来源地址:http://www.infoq.com/cn/articles/docke...
摘要:本系列教程翻译自,系列共有九篇,本文译自第一篇。,一种新的容器化技术,因为轻量级和便携化而受到广泛关注。本篇文章是系列教程的第一篇。镜像只读的容器模板,简言之就是系统镜像文件。首先,向发出请求创建一个镜像并且指定容器内要运行的命令。 本系列教程翻译自 Flux7 Docker Tutorial Series,系列共有九篇,本文译自第一篇 Part 1: An Introduction。...
摘要:本系列教程翻译自,系列共有九篇,本文译自第一篇。,一种新的容器化技术,因为轻量级和便携化而受到广泛关注。本篇文章是系列教程的第一篇。镜像只读的容器模板,简言之就是系统镜像文件。首先,向发出请求创建一个镜像并且指定容器内要运行的命令。 本系列教程翻译自 Flux7 Docker Tutorial Series,系列共有九篇,本文译自第一篇 Part 1: An Introduction。...
阅读 774·2023-04-25 16:55
阅读 2803·2021-10-11 10:59
阅读 2070·2021-09-09 11:38
阅读 1782·2021-09-03 10:40
阅读 1485·2019-08-30 15:52
阅读 1125·2019-08-30 15:52
阅读 953·2019-08-29 15:33
阅读 3493·2019-08-29 11:26