摘要:在写单例模式的代码之前,我们先简单了解一下两个知识点,关于类的加载顺序和关键字。懒汉和饿汉在程序编写上,一般将单例模式分为两种,分别是饿汉式和懒汉式,饿汉式在类加载时就完成了初始化,所以类加载比较慢,但获取对象的速度快。
定义单例模式是比较常见的一种设计模式,目的是保证一个类只能有一个实例,而且自行实例化并向整个系统提供这个实例,避免频繁创建对象,节约内存。
单例模式的应用场景很多,
比如我们电脑的操作系统的回收站就是一个很好的单例模式应用,电脑上的文件、视频、音乐等被删除后都会进入到回收站中;还有计算机中的打印机也是采用单例模式设计的,一个系统中可以存在多个打印任务,但是只能有一个正在工作的任务;Web页面的计数器也是用单例模式实现的,可以不用把每次刷新都记录到数据库中。
通过回味这些应用场景,我们对单例模式的核心思想也就有了更清晰的认识,下面就开始用代码来实现。
在写单例模式的代码之前,我们先简单了解一下两个知识点,关于类的加载顺序和static关键字。
类加载顺序类加载(classLoader)机制一般遵从下面的加载顺序
如果类还没有被加载:
先执行父类的静态代码块和静态变量初始化,静态代码块和静态变量的执行顺序跟代码中出现的顺序有关。
执行子类的静态代码块和静态变量初始化。
执行父类的实例变量初始化
执行父类的构造函数
执行子类的实例变量初始化
执行子类的构造函数
同时,加载类的过程是线程私有的,别的线程无法进入。
如果类已经被加载:
静态代码块和静态变量不在重复执行,再创建类对象时,只执行与实例相关的变量初始化和构造方法。
static关键字一个类中如果有成员变量或者方法被static关键字修饰,那么该成员变量或方法将独立于该类的任何对象。它不依赖类特定的实例,被类的所有实例共享,只要这个类被加载,该成员变量或方法就可以通过类名去进行访问,它的作用用一句话来描述就是,不用创建对象就可以调用方法或者变量,这简直就是为单例模式的代码实现量身打造的。
下面将列举几种单例模式的实现方式,其关键方法都是用static修饰的,并且,为了避免单例的类被频繁创建对象,我们可以用private的构造函数来确保单例类无法被外部实例化。
懒汉和饿汉在程序编写上,一般将单例模式分为两种,分别是饿汉式和懒汉式,
饿汉式:在类加载时就完成了初始化,所以类加载比较慢,但获取对象的速度快。
懒汉式:在类加载时不初始化,等到第一次被使用时才初始化。
代码实现1、饿汉式 (可用)
public class Singleton {
private final static Singleton INSTANCE = new Singleton();
private Singleton(){}
public static Singleton getInstance(){
return INSTANCE;
}
}
这是比较常见的写法,在类加载的时候就完成了实例化,避免了多线程的同步问题。当然缺点也是有的,因为类加载时就实例化了,没有达到Lazy Loading (懒加载) 的效果,如果该实例没被使用,内存就浪费了。
2、普通的懒汉式 (线程不安全,不可用)
public class Singleton {
private static Singleton instance = null;
private Singleton() {
}
public static Singleton getInstance() {
if (instance == null) {
instance = new Singleton();
}
return instance;
}
}
这是懒汉式中最简单的一种写法,只有在方法第一次被访问时才会实例化,达到了懒加载的效果。但是这种写法有个致命的问题,就是多线程的安全问题。假设对象还没被实例化,然后有两个线程同时访问,那么就可能出现多次实例化的结果,所以这种写法不可采用。
3、同步方法的懒汉式 (可用)
public class Singleton {
private static Singleton instance = null;
private Singleton() {
}
public static synchronized Singleton getInstance() {
if (instance == null) {
instance = new Singleton();
}
return instance;
}
}
这种写法是对getInstance()加了锁的处理,保证了同一时刻只能有一个线程访问并获得实例,但是缺点也很明显,因为synchronized是修饰整个方法,每个线程访问都要进行同步,而其实这个方法只执行一次实例化代码就够了,每次都同步方法显然效率低下,为了改进这种写法,就有了下面的双重检查懒汉式。
4、双重检查懒汉式 (可用,推荐)
public class Singleton {
private static volatile Singleton instance;
private Singleton() {}
public static Singleton getInstance() {
if (instance == null) {
synchronized (Singleton.class) {
if (instance == null) {
instance = new Singleton();
}
}
}
return instance;
}
}
这种写法用了两个if判断,也就是Double-Check,并且同步的不是方法,而是代码块,效率较高,是对第三种写法的改进。为什么要做两次判断呢?这是为了线程安全考虑,还是那个场景,对象还没实例化,两个线程A和B同时访问静态方法并同时运行到第一个if判断语句,这时线程A先进入同步代码块中实例化对象,结束之后线程B也进入同步代码块,如果没有第二个if判断语句,那么线程B也同样会执行实例化对象的操作了。
5、静态内部类 (可用,推荐)
public class Singleton {
private Singleton() {}
private static class SingletonInstance {
private static final Singleton INSTANCE = new Singleton();
}
public static Singleton getInstance() {
return SingletonInstance.INSTANCE;
}
}
这是很多开发者推荐的一种写法,这种静态内部类方式在Singleton类被装载时并不会立即实例化,而是在需要实例化时,调用getInstance方法,才会装载SingletonInstance类,从而完成对象的实例化。
同时,因为类的静态属性只会在第一次加载类的时候初始化,也就保证了SingletonInstance中的对象只会被实例化一次,并且这个过程也是线程安全的。
6、枚举 (可用、推荐)
public enum Singleton { INSTANCE; }
这种写法在《Effective JAVA》中大为推崇,它可以解决两个问题:
1)线程安全问题。因为Java虚拟机在加载枚举类的时候会使用ClassLoader的方法,这个方法使用了同步代码块来保证线程安全。
2)避免反序列化破坏对象,因为枚举的反序列化并不通过反射实现。
好了,单例模式的几种写法就介绍到这了,最后简单总结一下单例模式的优缺点
单例模式的优缺点单例类只有一个实例,节省了内存资源,对于一些需要频繁创建销毁的对象,使用单例模式可以提高系统性能;
单例模式可以在系统设置全局的访问点,优化和共享数据,例如前面说的Web应用的页面计数器就可以用单例模式实现计数值的保存。
单例模式一般没有接口,扩展的话除了修改代码基本上没有其他途径。
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/7190.html
摘要:那有什么办法保证只有一个领导人斯大林呢较常见的两种方式饿汉式和懒汉式二实战图这里提示一点,在学习设计模式的时候,图会让你更容易,而且深刻的去理解到该模式的核心。下一篇的设计模式是工厂方法模式。 就算不懂设计模式的兄弟姐妹们,想必也听说过单例模式,并且在项目中也会用上。但是,真正理解和熟悉单例模式的人有几个呢?接下来我们一起来学习设计模式中最简单的模式之一——单例模式 一、为什么叫单...
摘要:总之,选择单例模式就是为了避免不一致状态,避免政出多头。二饿汉式单例饿汉式单例类在类初始化时,已经自行实例化静态工厂方法饿汉式在类创建的同时就已经创建好一个静态的对象供系统使用,以后不再改变,所以天生是线程安全的。 概念: Java中单例模式是一种常见的设计模式,单例模式的写法有好几种,这里主要介绍两种:懒汉式单例、饿汉式单例。 单例模式有以下特点: 1、单例类只能有一个实例。 ...
摘要:如此便可使得这一实现方式能够同时具备线程安全延迟加载以及节省大量同步判断资源等优势,可以说是单例模式的最佳实现了 单例模式(Singleton)是一种使用率非常高的设计模式,其主要目的在于保证某一类在运行期间仅被创建一个实例,并为该实例提供了一个全局访问方法,通常命名为getInstance()方法。单例模式的本质简言之即是: 控制实例数目 以Java为例,单例模式通常可分为饿汉式和懒...
阅读 2870·2021-09-23 11:32
阅读 2880·2021-09-22 15:12
阅读 1677·2019-08-30 14:07
阅读 3414·2019-08-29 16:59
阅读 1525·2019-08-29 11:11
阅读 2277·2019-08-26 13:50
阅读 2371·2019-08-26 13:49
阅读 2590·2019-08-26 11:49