摘要:是要和配合使用的也就是和是绑定在一起的,而的实现原理又依赖于,自然而然作为的一个内部类无可厚非。示意图如下是的内部类,因此每个能够访问到提供的方法,相当于每个都拥有所属同步器的引用。
Condition简介Object类是Java中所有类的父类, 在线程间实现通信的往往会应用到Object的几个方法: wait(),wait(long timeout),wait(long timeout, int nanos)与notify(),notifyAll() 实现等待/通知机制,同样的, 在Java Lock体系下依然会有同样的方法实现等待/通知机制。 从整体上来看Object的wait和notify/notify是与对象监视器配合完成线程间的等待/通知机制,Condition与Lock配合完成等待/通知机制, 前者是Java底层级别的,后者是语言级别的,具有更高的可控制性和扩展性。 两者除了在使用方式上不同外,在功能特性上还是有很多的不同:
Condition能够支持不响应中断,而通过使用Object方式不支持
Condition能够支持多个等待队列(new 多个Condition对象),而Object方式只能支持一个
Condition能够支持超时时间的设置,而Object不支持
参照Object的wait和notify/notifyAll方法,Condition也提供了同样的方法:
针对Object的wait方法
void await() throws InterruptedException//当前线程进入等待状态,如果在等待状态中被中断会抛出被中断异常long awaitNanos(long nanosTimeout)//当前线程进入等待状态直到被通知,中断或者超时boolean await(long time, TimeUnit unit)throws InterruptedException//同第二种,支持自定义时间单位boolean awaitUntil(Date deadline) throws InterruptedException//当前线程进入等待状态直到被通知,中断或者到了某个时间
针对Object的notify/notifyAll方法
void signal()//唤醒一个等待在condition上的线程,将该线程从等待队列中转移到同步队列中,如果在同步队列中能够竞争到Lock则可以从等待方法中返回。void signalAll()//与1的区别在于能够唤醒所有等待在condition上的线程Condition实现原理分析 等待队列
创建一个Condition对象是通过lock.newCondition(), 而这个方法实际上是会创建ConditionObject对象,该类是AQS的一个内部类。 Condition是要和Lock配合使用的也就是Condition和Lock是绑定在一起的,而lock的实现原理又依赖于AQS, 自然而然ConditionObject作为AQS的一个内部类无可厚非。 我们知道在锁机制的实现上,AQS内部维护了一个同步队列,如果是独占式锁的话, 所有获取锁失败的线程的尾插入到同步队列, 同样的,Condition内部也是使用同样的方式,内部维护了一个等待队列, 所有调用condition.await方法的线程会加入到等待队列中,并且线程状态转换为等待状态。 另外注意到ConditionObject中有两个成员变量:
/** First node of condition queue. */private transient Node firstWaiter;/** Last node of condition queue. */private transient Node lastWaiter;
ConditionObject通过持有等待队列的头尾指针来管理等待队列。 注意Node类复用了在AQS中的Node类,Node类有这样一个属性:
//后继节点Node nextWaiter;
等待队列是一个单向队列,而在之前说AQS时知道同步队列是一个双向队列。
等待队列示意图:
注意: 我们可以多次调用lock.newCondition()方法创建多个Condition对象,也就是一个lLock可以持有多个等待队列。 利用Object的方式实际上是指在对象Object对象监视器上只能拥有一个同步队列和一个等待队列; 并发包中的Lock拥有一个同步队列和多个等待队列。示意图如下:
ConditionObject是AQS的内部类, 因此每个ConditionObject能够访问到AQS提供的方法,相当于每个Condition都拥有所属同步器的引用。
await实现原理当调用condition.await()方法后会使得当前获取lock的线程进入到等待队列, 如果该线程能够从await()方法返回的话一定是该线程获取了与condition相关联的lock。 await()方法源码如下:
public final void await() throws InterruptedException { if (Thread.interrupted()) throw new InterruptedException(); // 1. 将当前线程包装成Node,尾插法插入到等待队列中
Node node = addConditionWaiter(); // 2. 释放当前线程所占用的lock,在释放的过程中会唤醒同步队列中的下一个节点
int savedState = fullyRelease(node); int interruptMode = 0; while (!isOnSyncQueue(node)) { // 3. 当前线程进入到等待状态
LockSupport.park(this); if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) break;
} // 4. 自旋等待获取到同步状态(即获取到lock)
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT; if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters(); // 5. 处理被中断的情况
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}
当前线程调用condition.await()方法后,会使得当前线程释放lock然后加入到等待队列中, 直至被signal/signalAll后会使得当前线程从等待队列中移至到同步队列中去, 直到获得了lock后才会从await方法返回,或者在等待时被中断会做中断处理。
addConditionWaiter()将当前线程添加到等待队列中,其源码如下:
private Node addConditionWaiter() { Node t = lastWaiter; // If lastWaiter is cancelled, clean out.
if (t != null && t.waitStatus != Node.CONDITION) {
unlinkCancelledWaiters();
t = lastWaiter;
} //将当前线程包装成Node
Node node = new Node(Thread.currentThread(), Node.CONDITION); if (t == null) //t==null,同步队列为空的情况
firstWaiter = node; else
//尾插法
t.nextWaiter = node; //更新lastWaiter
lastWaiter = node; return node;
}
这里通过尾插法将当前线程封装的Node插入到等待队列中, 同时可以看出等待队列是一个不带头结点的链式队列,之前我们学习AQS时知道同步队列是一个带头结点的链式队列。
将当前节点插入到等待对列之后,使用fullyRelease(0)方法释放当前线程释放lock,源码如下:
final int fullyRelease(Node node) { boolean failed = true; try { int savedState = getState(); if (release(savedState)) { //成功释放同步状态
failed = false; return savedState;
} else { //不成功释放同步状态抛出异常
throw new IllegalMonitorStateException();
}
} finally { if (failed)
node.waitStatus = Node.CANCELLED;
}
}
调用AQS的模板方法release()方法释放AQS的同步状态并且唤醒在同步队列中头结点的后继节点引用的线程, 如果释放成功则正常返回,若失败的话就抛出异常。
如何从await()方法中退出?再看await()方法有这样一段代码:
while (!isOnSyncQueue(node)) { // 3. 当前线程进入到等待状态
LockSupport.park(this); if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) break;
}
当线程第一次调用condition.await()方法时, 会进入到这个while()循环中,然后通过LockSupport.park(this)方法使得当前线程进入等待状态, 那么要想退出这个await方法就要先退出这个while循环,退出while循环的出口有2个:
break退出while循环
while循环中的逻辑判断为false
第1种情况的条件是当前等待的线程被中断后会走到break退出,
第2种情况是当前节点被移动到了同步队列中,(即另外线程调用的condition的signal或者signalAll方法), while中逻辑判断为false后结束while循环。
当退出while循环后就会调用acquireQueued(node, savedState),该方法的作用是 在自旋过程中线程不断尝试获取同步状态,直至成功(线程获取到lock)。
这样就说明了退出await方法必须是已经获得了Condition引用(关联)的Lock。
await方法示意图如下:
调用condition.await方法的线程必须是已经获得了lock,也就是当前线程是同步队列中的头结点。 调用该方法后会使得当前线程所封装的Node尾插入到等待队列中。
超时机制的支持
condition还额外支持了超时机制,使用者可调用方法awaitNanos,awaitUtil。 这两个方法的实现原理,基本上与AQS中的tryAcquire方法如出一辙。
不响应中断的支持
调用condition.awaitUninterruptibly()方法,该方法的源码为:
public final void awaitUninterruptibly() { Node node = addConditionWaiter(); int savedState = fullyRelease(node); boolean interrupted = false; while (!isOnSyncQueue(node)) { LockSupport.park(this); if (Thread.interrupted())
interrupted = true;
} if (acquireQueued(node, savedState) || interrupted)
selfInterrupt();
}
与上面的await方法基本一致,只不过减少了对中断的处理, 并省略了reportInterruptAfterWait方法抛被中断的异常。
signal和signalAll实现原理调用Condition的signal或者signalAll方法可以将 等待队列中等待时间最长的节点移动到同步队列中,使得该节点能够有机会获得lock。 按照等待队列是先进先出(FIFO)的, 所以等待队列的头节点必然会是等待时间最长的节点, 也就是每次调用condition的signal方法是将头节点移动到同步队列中。 signal()源码如下:
public final void signal() { //1. 先检测当前线程是否已经获取lock
if (!isHeldExclusively()) throw new IllegalMonitorStateException(); //2. 获取等待队列中第一个节点,之后的操作都是针对这个节点
Node first = firstWaiter; if (first != null)
doSignal(first);
}
signal方法首先会检测当前线程是否已经获取lock, 如果没有获取lock会直接抛出异常,如果获取的话再得到等待队列的头指针引用的节点,doSignal方法也是基于该节点。 doSignal方法源码如下:
private void doSignal(Node first) { do { if ( (firstWaiter = first.nextWaiter) == null)
lastWaiter = null; //1. 将头结点从等待队列中移除
first.nextWaiter = null; //2. while中transferForSignal方法对头结点做真正的处理
} while (!transferForSignal(first) &&
(first = firstWaiter) != null);
}
真正对头节点做处理的是transferForSignal(),该方法源码如下:
final boolean transferForSignal(Node node) { //1. 更新状态为0
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0)) return false; //2.将该节点移入到同步队列中去
Node p = enq(node); int ws = p.waitStatus; if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL)) LockSupport.unpark(node.thread); return true;
}
这段代码主要做了两件事情:
1.将头结点的状态更改为CONDITION
2.调用enq方法,将该节点尾插入到同步队列中
调用condition的signal的前提条件是 当前线程已经获取了lock,该方法会使得等待队列中的头节点(等待时间最长的那个节点)移入到同步队列, 而移入到同步队列后才有机会使得等待线程被唤醒, 即从await方法中的LockSupport.park(this)方法中返回,从而才有机会使得调用await方法的线程成功退出。
signal方法示意图如下:
signalAll
sigllAll与sigal方法的区别体现在doSignalAll方法上。doSignalAll()的源码如下:
private void doSignalAll(Node first) {
lastWaiter = firstWaiter = null; do { Node next = first.nextWaiter;
first.nextWaiter = null;
transferForSignal(first);
first = next;
} while (first != null);
}
doSignal方法只会对等待队列的头节点进行操作,而doSignalAll方法将等待队列中的每一个节点都移入到同步队列中, 即“通知”当前调用condition.await()方法的每一个线程。
await与signal和signalAll的结合await和signal和signalAll方法就像一个开关控制着线程A(等待方)和线程B(通知方)。 它们之间的关系可以用下面一个图来表现得更加贴切:
线程awaitThread先通过lock.lock()方法获取锁成功后调用了condition.await方法进入等待队列, 而另一个线程signalThread通过lock.lock()方法获取锁成功后调用了condition.signal或者signalAll方法, 使得线程awaitThread能够有机会移入到同步队列中, 当其他线程释放lock后使得线程awaitThread能够有机会获取lock, 从而使得线程awaitThread能够从await方法中退出,然后执行后续操作。 如果awaitThread获取lock失败会直接进入到同步队列。
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/7186.html
摘要:返回与此锁相关联的给定条件等待的线程数的估计。查询是否有线程正在等待获取此锁。为公平锁,为非公平锁线程运行了获得锁定运行结果公平锁的运行结果是有序的。 系列文章传送门: Java多线程学习(一)Java多线程入门 Java多线程学习(二)synchronized关键字(1) java多线程学习(二)synchronized关键字(2) Java多线程学习(三)volatile关键字 ...
摘要:语言在之前,提供的唯一的并发原语就是管程,而且之后提供的并发包,也是以管程技术为基础的。但是管程更容易使用,所以选择了管程。线程进入条件变量的等待队列后,是允许其他线程进入管程的。并发编程里两大核心问题互斥和同步,都可以由管程来帮你解决。 并发编程这个技术领域已经发展了半个世纪了。有没有一种核心技术可以很方便地解决我们的并发问题呢?这个问题, 我会选择 Monitor(管程)技术。Ja...
摘要:造成当前线程在接到信号被中断或到达指定最后期限之前一直处于等待状态。该线程从等待方法返回前必须获得与相关的锁。如果线程已经获取了锁,则将唤醒条件队列的首节点。 一、写在前面 在前几篇我们聊了 AQS、CLH、ReentrantLock、ReentrantReadWriteLock等的原理以及其源码解读,具体参见专栏 《非学无以广才》 这章我们一起聊聊显示的Condition 对象。 ...
摘要:最后一直调用函数判断节点是否被转移到队列上,也就是中等待获取锁的队列。这样的话,函数中调用函数就会返回,导致函数进入最后一步重新获取锁的状态。函数其实就做了一件事情,就是不断尝试调用函数,将队首的一个节点转移到队列中,直到转移成功。 我在前段时间写了一篇关于AQS源码解析的文章AbstractQueuedSynchronizer超详细原理解析,在文章里边我说JUC包中的大部分多线程相...
摘要:调用代码的线程就持有了对象监视器,其他线程只有等待锁被释放时再次争抢。使用多个对象,可以唤醒部分指定线程,有助于提升程序运行的效率。方法的作用是返回等待与此锁定相关给定条件的线程估计数。线程在等待时间到达前,可以被其他线程提前唤醒。 调用lock.lock()代码的线程就持有了对象监视器,其他线程只有等待锁被释放时再次争抢。效果和使用synchronized关键字一样,线程之间执行的...
阅读 2095·2021-11-23 09:51
阅读 2839·2021-11-22 15:35
阅读 2936·2019-08-30 15:53
阅读 1036·2019-08-30 14:04
阅读 3275·2019-08-29 12:39
阅读 1801·2019-08-28 17:57
阅读 1085·2019-08-26 13:39
阅读 550·2019-08-26 13:34