资讯专栏INFORMATION COLUMN

[LeetCode] Product of Array Except Self

golden_hamster / 3346人阅读

Problem

Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].

Solve it without division and in O(n).

Example

For example, given [1,2,3,4], return [24,12,8,6].

Follow up:

Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)

Solution
class Solution {
    public int[] productExceptSelf(int[] nums) {
        long product = 1;
        int[] res = new int[nums.length];
        for (int i = 0; i < nums.length; i++) {
        //so there are two special situations: one number or more than one number equals 0
            if (nums[i] != 0) product *= (long) nums[i];
            else {
                //here we consider if one number is 0
                //all other products should be 0
                Arrays.fill(res, 0);
                //*maybe* except for this one, lets create a method for it
                res[i] = getProduct(nums, i);
                //stop here and return, since we already got the correct result array
                //*and* no need to consider the other situation, it would be all 0"s
                return res;
            }
        } 
        for (int i = 0; i < res.length; i++) {
            res[i] = (int) (product / nums[i]);
        }
        return res;
    }
    public int getProduct(int[] nums, int k) {
        int product = 1;
        for (int i = 0; i < nums.length; i++) {
            if (i != k) product *= nums[i];
        }
        return product;
    }
}
Update 2018-9
//Solution without division

class Solution {
    public int[] productExceptSelf(int[] nums) {
        int n = nums.length;
        int[] res = new int[n];
        int[] dp = new int[n];
        int[] pd = new int[n];
        dp[0] = nums[0];
        for (int i = 1; i < n; i++) {
            dp[i] = dp[i-1] * nums[i];
        }
        pd[n-1] = nums[n-1];
        for (int i = n-2; i > 0; i--) {
            pd[i] = pd[i+1] * nums[i];
        }
        res[0] = pd[1];
        res[n-1] = dp[n-2];
        for (int i = 1; i < n-1; i++) {
            res[i] = dp[i-1] * pd[i+1];
        }
        return res;
    }
}

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/71105.html

相关文章

  • LeetCode 238 Product of Array Except Self

    Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].Solve it without division and in O(n). For...

    henry14 评论0 收藏0
  • 【Python】LeetCode 238. Product of Array Except Self

    摘要:题目描述题目解析简单来说就是对于数组中每一项,求其他项之积。算一遍全部元素的积再分别除以每一项要仔细考虑元素为零的情况。没有零直接除下去。一个零零的位置对应值为其他元素之积,其他位置为零。两个以上的零全部都是零。 题目描述 Given an array of n integers where n > 1, nums, return an array output such that o...

    kaka 评论0 收藏0
  • [Leetcode] Product of Array Except Self 自身以外的数组乘积

    摘要:动态规划复杂度时间空间思路分析出自身以外数组乘积的性质,它实际上是自己左边左右数的乘积,乘上自己右边所有数的乘积。所以我们可以用一个数组来表示第个数字前面数的乘积,这样。同理,我们可以反向遍历一遍生成另一个数组。 Product of Array Except Self Given an array of n integers where n > 1, nums, return an...

    rockswang 评论0 收藏0
  • [LeetCode] 238. Product of Array Except Self

    Problem Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i]. Solve it without division and in ...

    Loong_T 评论0 收藏0
  • 238. Product of Array Except Self

    问题:Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i]. Solve it without division and in O(n)....

    刘永祥 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<