资讯专栏INFORMATION COLUMN

【Java系列】从字节码角度深度理解Java函数调用传参方式

LdhAndroid / 2163人阅读

摘要:下文将从字节码的角度,分析中基本类型传参和对象传参。主函数执行时,操作栈会推入主函数栈帧,其中包含了主函数的局部变量表,字节码,返回值等信息。主函数的栈帧会被推入栈,成为当前操作栈。

个人网站地址: http://kailuncen.me/2017/06/0...

一个小问题

在开源中国看到这样一则问题

https://www.oschina.net/quest...,其中的变量a前后的输出是什么?

我答错了,我认为传入function的就是main函数中的a,在function中修改了a的地址,因此回到主函数后,a的地址已经变成了function中所赋予的a2的地址,因此经过function处理后a的值已经改变了。
但结果并不是,因为我忽略了Java的基础知识点之一。

Java中传参都是值传递,如果是基本类型,就是对值的拷贝,如果是对象,就是对引用地址的拷贝。

下文将从字节码的角度,分析Java中基本类型传参和对象传参。

基本类型传参

以下是处理类Porcess,代码应该已经能够自解释了。function1是将传参a变成2,function2是初始化int b,赋值为5,然后将b赋值给a。

public class Process {

    public void function3(int a) {
        a = 2;
    }

    public void function4(int a) {
        int b = 5;
        a = b;
    }
}

我们继续看测试类TestPrimitive

public class TestPrimitive {

    public static void main(String[] args) {
        Process process = new Process();
        int age = 18;
        System.out.println(age);
        process.function3(age);
        System.out.println(age);
    }
}

结果是在经过function3的处理后,输出结果是

18
18

修改测试类代码,在经过function4处理后,仍然一致。

18
18

结论: 基本类型的传参,对传参进行修改,不影响原本参数的值。

对象类型传参

以下是处理类Porcess,function1,将参数car的颜色设置成blue。function2,新建了car2,将car2赋值给了参数car。

public class Process {

    public void function1(Car car) {
        car.setColor("blue");
    }

    public void function2(Car car) {
        Car car2 = new Car("black");
        car = car2;
        car.setColor("orange");
    }
}

我们继续看测试类TestReference

public class TestReference {

    public static void main(String[] args) {
        Process process = new Process();
        Car car = new Car("red");
        System.out.println(car);
        process.function1(car);
        System.out.println(car);
    }
}

结果是在经过function1的处理后,输出结果是

Car{color="red"}
Car{color="blue"}

修改测试类,在经过function2的处理后

Car{color="red"}
Car{color="red"}

结论: 对象类型的传参,直接调用传参set方法,可以对原本参数进行修改。如果修改传参的指向地址,调用传参的set方法,无法对原本参数的值进行修改。

综上所述,基本类型的传参,在方法内部是值拷贝,有一个新的局部变量得到这个值,对这个局部变量的修改不影响原来的参数。对象类型的传参,传递的是堆上的地址,在方法内部是有一个新的局部变量得到引用地址的拷贝,对该局部变量的操作,影响的是同一块地址,因此原本的参数也会受影响,反之,若修改局部变量的引用地址,则不会对原本的参数产生任何可能的影响。

上文已经得到结论,我们从JVM的字节码的角度看一下过程是怎么样的。

首先大致JVM的基本结构,对基本类型,和对象存放的位置有一个大致的了解。下图是JVM的基本组件图。

介绍几个基本的组件

程序计数器: 存储每个线程下一步将执行的JVM指令。

JVM栈(JVM Stack): JVM栈是线程私有的,每个线程创建的同时都会创建JVM栈,JVM栈中存放的为当前线程中局部基本类型的变量(java中定义的八种基本类型:boolean、char、byte、short、int、long、float、double)、部分的返回结果以及Stack Frame(每个方法都会开辟一个自己的栈帧),非基本类型的对象在JVM栈上仅存放一个指向堆上的地址

堆(heap): JVM用来存储对象实例以及数组值的区域,可以认为Java中所有通过new创建的对象的内存都在此分配,Heap中的对象的内存需要等待GC进行回收。

方法区(Method Area): 方法区域存放了所加载的类的信息(名称、修饰符等)、类中的静态变量、类中定义为final类型的常量、类中的Field信息、类中的方法信息,当开发人员在程序中通过Class对象中的getName、isInterface等方法来获取信息时,这些数据都来源于方法区域。

本地方法栈(Native Method Stacks): JVM采用本地方法栈来支持native方法的执行,此区域用于存储每个native方法调用的状态。

运行时常量池(Runtime Constant Pool): 存放的为类中的固定的常量信息、方法和Field的引用信息等,其空间从方法区域中分配。JVM在加载类时会为每个class分配一个独立的常量池,但是运行时常量池中的字符串常量池是全局共享的。

下图是从另一个角度解析JVM的结构,JVM是基于栈来操作的,每一个线程有自己的操作栈,遇到方法调用时会开辟栈帧,它含有自己的返回值,局部变量表,操作栈,以及对常量池的符号引用。
如果是基本类型,则存放在栈里的是值,如果是对象,存放在栈上是对象在堆上存放的地址。

了解了JVM的基本结构,我们来看一下上述的两种代码,一种是基本类型传参,一种是对象传参,在字节码表现上的不同。
使用javap对字节码进行反编译

javap -verbose Main
基本类型传参字节码

以下是TestPrimitive类在执行function3时的字节码。

public static void main(java.lang.String[]);
    flags: ACC_PUBLIC, ACC_STATIC
    Code:
      stack=2, locals=3, args_size=1
         0: new           #2                  // class Process
         3: dup           
         4: invokespecial #3                  // Method Process."":()V
         7: astore_1      
         8: bipush        18
        10: istore_2      
        11: getstatic     #4                  // Field java/lang/System.out:Ljava/io/PrintStream;
        14: iload_2       
        15: invokevirtual #5                  // Method java/io/PrintStream.println:(I)V
        18: aload_1       
        19: iload_2       
        20: invokevirtual #6                  // Method Process.function3:(I)V
        23: getstatic     #4                  // Field java/lang/System.out:Ljava/io/PrintStream;
        26: iload_2       
        27: invokevirtual #5                  // Method java/io/PrintStream.println:(I)V
        30: return        
      LineNumberTable:
        ...........
      LocalVariableTable:
        Start  Length     Slot  Name          Signature
          0      31         0     args        [Ljava/lang/String;
          8      23         1    process      LProcess;
          11      20        2      age            I

主函数执行时,JVM操作栈会推入主函数栈帧,其中包含了主函数的局部变量表,字节码,返回值等信息。LocalVariableTable就是局部变量表,以0为索引起点,第0个是局部变量String数组 args,第1个是局部变量process,保存新创建的Process对象的引用地址。第2个是局部变量age。在字节码第8行,通过bipush 18,将常量18直接压入操作栈,然后第20行,是调用了process的function3方法,传入了age作为参数。
然后JVM操作栈将function3栈帧推入JVM栈,使得function3栈帧成为当前栈帧,开始执行。

public void function3(int);
    flags: ACC_PUBLIC
    Code:
      stack=1, locals=2, args_size=2
         0: iconst_2      
         1: istore_1      
         2: return        
      LocalVariableTable:
        Start  Length  Slot  Name   Signature
          0       3     0     this   LProcess;
          0       3     1       a      I

字节码显示,通过iconst_2,istore_1,将基本类型2推入栈,并保存在局部变量a中,这里就展示了我们在方法内部的修改都是对function3的局部变量a的值修改,不影响主函数中的a。从主函数的字节码中可以看到,它的值保存的还是第10行,通过istore_2保存到局部变量第2个索引处的18.

如果用图示来表示上述字节码执行过程中,JVM栈,man函数栈帧,function3栈帧内部变化的话,如下图所示。

1.主函数的栈帧会被推入JVM栈,成为当前操作栈。

2.然后进去main函数栈帧,初始化完毕后如下图所示。

3.主要看bipush 18,将基本变量18推入操作栈,基本变量类型是存储在栈帧内部的。

4.然后执行istore_2, 将栈顶出栈,并且保存在局部变量索引2处。

5.然继续执行至18: aload_1,,将创建的process的地址保存在局部变量索引1处,19:iload_2,将局部变量2处保存的基本类型压入栈。

6.然后执行至20:invokevirtula #6,也就是调用function3,进入function3的栈帧。执行0: iconst_2,将常量2推入栈,此时function3的栈帧有一个局部变量1处保存着传入的参数18。

7.继续执行1:istore_1,将栈顶推出,保存在局部变量1处,覆盖了传入的参数18,然后return,将function3函数栈帧弹出JVM栈,继续执行main函数栈帧。

之后会继续执行main函数栈帧,在function3函数栈帧中发生的一切都和Main Stack中的局部变量age的值没有任何关系。

对象类型传参字节码

以下是TestReference类在执行function2时的字节码。

Code:
      stack=3, locals=3, args_size=1
         0: new           #2                  // class Process
         3: dup           
         4: invokespecial #3                  // Method Process."":()V
         7: astore_1      
         8: new           #4                  // class Car
        11: dup           
        12: ldc           #5                  // String red
        14: invokespecial #6                  // Method Car."":(Ljava/lang/String;)V
        17: astore_2      
        18: getstatic     #7                  // Field java/lang/System.out:Ljava/io/PrintStream;
        21: aload_2       
        22: invokevirtual #8                  // Method java/io/PrintStream.println:(Ljava/lang/Object;)V
        25: aload_1       
        26: aload_2       
        27: invokevirtual #9                  // Method Process.function2:(LCar;)V
        30: getstatic     #7                  // Field java/lang/System.out:Ljava/io/PrintStream;
        33: aload_2       
        34: invokevirtual #8                  // Method java/io/PrintStream.println:(Ljava/lang/Object;)V
        37: return        
      LocalVariableTable:
        Start  Length  Slot       Name         Signature
          0      38         0     args         [Ljava/lang/String;
          8      30         1     process      LProcess;
          18      20        2     car          LCar;

我们可以通过字节码14-17行,看到局部变量索引2处存放的是Car的实例在堆上的地址,这和基本类型不同,基本类型的值都是直接存放在栈里面的。然后通过字节码第27行将car的引用地址传入function2。接下来我们看看function2的字节码。

public void function2(Car);
    flags: ACC_PUBLIC
    Code:
      stack=3, locals=3, args_size=2
         0: new           #4                  // class Car
         3: dup           
         4: ldc           #5                  // String black
         6: invokespecial #6                  // Method Car."":(Ljava/lang/String;)V
         9: astore_2      
        10: aload_2       
        11: astore_1     
        12: aload_1       
        13: ldc           #7                  // String orange
        15: invokevirtual #3                  // Method Car.setColor:(Ljava/lang/String;)V
        18: return     
      LocalVariableTable:
        Start  Length  Slot  Name       Signature
          0      13     0          this   LProcess;
          0      13     1           car   LCar;
         10       3     2          car2   LCar;

题外话,因为这个是调用具体实例的函数,所以索引0处保存的是实例的引用。索引1保存的是传参car的引用地址,car2保存的是函数内创建的Car实例的地址。字节码0-9,完成了car2的引用地址保存,第10行将Car2的引用地址推入栈,第11行通过astore_1,将栈顶值保存到第一个局部变量,也就是修改了覆盖了局部变量car的引用地址。因此第15行,修改的是car当前引用的地址的实例的参数值。当退出栈帧,回到主函数,主函数的局部变量a保存的引用地址没有改变。

如果用图示来表示上述字节码执行过程中,JVM栈,man函数栈帧,function3栈帧内部变化的话,如下图所示。

1.main函数栈帧和上文测试基本类型传参时的字节码大致类似,不同的是局部变量处。局部变量2处保存的是main函数中新建的Car实例的堆上地址。对象的实际存放都是在堆中,栈帧的局部变量中保存的是他们在堆上的地址。

2.一直执行到调用function2,进入function2栈帧。在执行至9:astore_2时,栈中新创建的Car实例的引用地址出栈,保存在局部变量2处。局部变量1保存的是传参进来的Car实例的引用地址。

3.然后执行至10: aload_2,11:store_1,在这里,1236df被推入栈,然后保存在了局部变量1,覆盖了局部变量car本来的引用地址。

**
因此,当function2对局部变量2进行相关操作时,影响的都是1236df这块地址,和main函数局部变量car中保存的1235df不是一块地址,所以前后打印结果一致。**

测试类TestReference调用function1时,function1没有改变局部变量car的引用地址,保存的仍然是传入的引用地址,所以function1中car进行的操作影响了这块地址保存的内容,导致了前后打印结果不一致。

Code:
      stack=2, locals=2, args_size=2
         0: aload_1       
         1: ldc           #2                  // String blue
         3: invokevirtual #3                  // Method Car.setColor:(Ljava/lang/String;)V
         6: return        
      LocalVariableTable:
        Start  Length  Slot  Name   Signature
         0       7       0    this    LProcess;
         0       7       1     car    LCar;

本文对Java基本类型传参和对象传参,从字节码角度进行了分析,现在不会再搞错了吧~

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/70142.html

相关文章

  • Java系列JVM角度深度解析Java核心类String的不可变特性

    摘要:性能,大量运用在哈希的处理中,由于的不可变性,可以只计算一次哈希值,然后缓存在内部,后续直接取就好了。这是目前的一个底层字节码的实现,那么是不是没有使用或者的必要了呢。 凯伦说,公众号ID: KailunTalk,努力写出最优质的技术文章,欢迎关注探讨。 1. 前言 最近看到几个有趣的关于Java核心类String的问题。 String类是如何实现其不可变的特性的,设计成不可变的好处...

    afishhhhh 评论0 收藏0
  • Java开发

    摘要:大多数待遇丰厚的开发职位都要求开发者精通多线程技术并且有丰富的程序开发调试优化经验,所以线程相关的问题在面试中经常会被提到。将对象编码为字节流称之为序列化,反之将字节流重建成对象称之为反序列化。 JVM 内存溢出实例 - 实战 JVM(二) 介绍 JVM 内存溢出产生情况分析 Java - 注解详解 详细介绍 Java 注解的使用,有利于学习编译时注解 Java 程序员快速上手 Kot...

    LuDongWei 评论0 收藏0
  • 读书笔记之深入理解Java虚拟机

    摘要:前言本文内容基本摘抄自深入理解虚拟机,以供复习之用,没有多少参考价值。此区域是唯一一个在虚拟机规范中没有规定任何情况的区域。堆是所有线程共享的内存区域,在虚拟机启动时创建。虚拟机上把方法区称为永久代。 前言 本文内容基本摘抄自《深入理解Java虚拟机》,以供复习之用,没有多少参考价值。想要更详细了解请参考原书。 第二章 1.运行时数据区域 showImg(https://segment...

    jaysun 评论0 收藏0
  • 【修炼内功】[JVM] 浅谈虚拟机内存模型

    摘要:也正是因此,一旦出现内存泄漏或溢出问题,如果不了解的内存管理原理,那么将会对问题的排查带来极大的困难。 本文已收录【修炼内功】跃迁之路 showImg(https://segmentfault.com/img/bVbsP9I?w=1024&h=580); 不论做技术还是做业务,对于Java开发人员来讲,理解JVM各种原理的重要性不必再多言 对于C/C++而言,可以轻易地操作任意地址的...

    sanyang 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<