摘要:最后由负责处理的取出请求完成写入操作。当写入过快时会遇见什么问题写入过快时,的水位会马上被推高。如何避免一种是加快速度当达到配置上限时,会导致阻塞等到工作完成。通过这个可以防止写入过快时候把端写爆,有一定反压作用。
摘要: 首先我们简单回顾下整个写入流程 client api ==> RPC ==> server IPC ==> RPC queue ==> RPC handler ==> write WAL ==> write memstore ==> flush to filesystem 整个写入流程从客户端调用API开始,数据会通过protobuf编码成一个请求,通过scoket实现的IPC模块被送达server的RPC队列中。
首先我们简单回顾下整个写入流程
client api ==> RPC ==> server IPC ==> RPC queue ==> RPC handler ==> write WAL ==> write memstore ==> flush to filesystem
整个写入流程从客户端调用API开始,数据会通过protobuf编码成一个请求,通过scoket实现的IPC模块被送达server的RPC队列中。最后由负责处理RPC的handler取出请求完成写入操作。写入会先写WAL文件,然后再写一份到内存中,也就是memstore模块,当满足条件时,memstore才会被flush到底层文件系统,形成HFile。
当写入过快时会遇见什么问题?
写入过快时,memstore的水位会马上被推高。
你可能会看到以下类似日志:
RegionTooBusyException: Above memstore limit, regionName=xxxxx ...
这个是Region的memstore占用内存大小超过正常的4倍,这时候会抛异常,写入请求会被拒绝,客户端开始重试请求。当达到128M的时候会触发flush memstore,当达到128M * 4还没法触发flush时候会抛异常来拒绝写入。两个相关参数的默认值如下:
hbase.hregion.memstore.flush.size=128M hbase.hregion.memstore.block.multiplier=4
或者这样的日志:
regionserver.MemStoreFlusher: Blocking updates on hbase.example.host.com,16020,1522286703886: the global memstore size 1.3 G is >= than blocking 1.3 G size regionserver.MemStoreFlusher: Memstore is above high water mark and block 528ms
这是所有region的memstore内存总和开销超过配置上限,默认是配置heap的40%,这会导致写入被阻塞。目的是等待flush的线程把内存里的数据flush下去,否则继续允许写入memestore会把内存写爆
hbase.regionserver.global.memstore.upperLimit=0.4 # 较旧版本,新版本兼容 hbase.regionserver.global.memstore.size=0.4 # 新版本
当写入被阻塞,队列会开始积压,如果运气不好最后会导致OOM,你可能会发现JVM由于OOM crash或者看到如下类似日志:
ipc.RpcServer: /192.168.x.x:16020 is unable to read call parameter from client 10.47.x.x java.lang.OutOfMemoryError: Java heap space
HBase这里我认为有个很不好的设计,捕获了OOM异常却没有终止进程。这时候进程可能已经没法正常运行下去了,你还会在日志里发现很多其它线程也抛OOM异常。比如stop可能根本stop不了,RS可能会处于一种僵死状态。
如何避免RS OOM?
一种是加快flush速度:
hbase.hstore.blockingWaitTime = 90000 ms hbase.hstore.flusher.count = 2 hbase.hstore.blockingStoreFiles = 10
当达到hbase.hstore.blockingStoreFiles配置上限时,会导致flush阻塞等到compaction工作完成。阻塞时间是hbase.hstore.blockingWaitTime,可以改小这个时间。hbase.hstore.flusher.count可以根据机器型号去配置,可惜这个数量不会根据写压力去动态调整,配多了,非导入数据多场景也没用,改配置还得重启。
同样的道理,如果flush加快,意味这compaction也要跟上,不然文件会越来越多,这样scan性能会下降,开销也会增大。
hbase.regionserver.thread.compaction.small = 1 hbase.regionserver.thread.compaction.large = 1
增加compaction线程会增加CPU和带宽开销,可能会影响正常的请求。如果不是导入数据,一般而言是够了。好在这个配置在云HBase内是可以动态调整的,不需要重启。
上述配置都需要人工干预,如果干预不及时server可能已经OOM了,这时候有没有更好的控制方法?
hbase.ipc.server.max.callqueue.size = 1024 * 1024 * 1024 # 1G
直接限制队列堆积的大小。当堆积到一定程度后,事实上后面的请求等不到server端处理完,可能客户端先超时了。并且一直堆积下去会导致OOM,1G的默认配置需要相对大内存的型号。当达到queue上限,客户端会收到CallQueueTooBigException 然后自动重试。通过这个可以防止写入过快时候把server端写爆,有一定反压作用。线上使用这个在一些小型号稳定性控制上效果不错。
原文链接
阅读更多干货好文,请关注扫描以下二维码:
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/69015.html
摘要:最后由负责处理的取出请求完成写入操作。当写入过快时会遇见什么问题写入过快时,的水位会马上被推高。如何避免一种是加快速度当达到配置上限时,会导致阻塞等到工作完成。通过这个可以防止写入过快时候把端写爆,有一定反压作用。 首先我们简单回顾下整个写入流程 client api ==> RPC ==> server IPC ==> RPC queue ==> RPC handler ==> w...
摘要:最后由负责处理的取出请求完成写入操作。当写入过快时会遇见什么问题写入过快时,的水位会马上被推高。如何避免一种是加快速度当达到配置上限时,会导致阻塞等到工作完成。通过这个可以防止写入过快时候把端写爆,有一定反压作用。 首先我们简单回顾下整个写入流程 client api ==> RPC ==> server IPC ==> RPC queue ==> RPC handler ==> w...
阅读 1710·2021-11-11 10:58
阅读 4183·2021-09-09 09:33
阅读 1256·2021-08-18 10:23
阅读 1547·2019-08-30 15:52
阅读 1623·2019-08-30 11:06
阅读 1866·2019-08-29 14:03
阅读 1506·2019-08-26 14:06
阅读 2942·2019-08-26 10:39