资讯专栏INFORMATION COLUMN

Java - Sorting Algorithms

陈江龙 / 1913人阅读

Complexity
Quicksort Mergesort Heapsort
Time Complexity O(nlogn) O(nlogn) O(nlogn)
Space Complexity O(1) O(n) Could be O(1)
Quicksort

Quicksort is similar to MergeSort in that the sort is accomplished by dividing the array into two partitions and then sorting each partition recursively.

In Quicksort, the array is partitioned by placing all items smaller than some pivot item before that item and all items larger than the pivot item after it.

There are many different versions of Quicksort that pick pivot in different ways.

Always pick first element as pivot.

Always pick last element as pivot.

Pick a random element as pivot.

Pick median as pivot.

Implement Quicksort in Java using Arrays (Takes the last element as pivot)

public class QuickSortArray {
    
    private int partition (int arr[], int low, int high) {
        
        int pivot = arr[high];
        int i = low - 1;
        for (int j=low; j

Implement Quicksort in Java using LinkedList (Takes the median as pivot)

public class QuickSortList {

    public ListNode sortList(ListNode head) {
        if (head == null || head.next == null) {
            return head;
        }
        
        ListNode mid = findMedian(head); // O(n)
        
        ListNode leftDummy = new ListNode(0), leftTail = leftDummy;
        ListNode rightDummy = new ListNode(0), rightTail = rightDummy;
        ListNode middleDummy = new ListNode(0), middleTail = middleDummy;
        while (head != null) {
            if (head.val < mid.val) {
                leftTail.next = head;
                leftTail = head;
            } else if (head.val > mid.val) {
                rightTail.next = head;
                rightTail = head;
            } else {
                middleTail.next = head;
                middleTail = head;
            }
            head = head.next;
        }
        
        leftTail.next = null;
        middleTail.next = null;
        rightTail.next = null;
        
        ListNode left = sortList(leftDummy.next);
        ListNode right = sortList(rightDummy.next);
        
        return concat(left, middleDummy.next, right);
    }
    
    private ListNode findMedian(ListNode head) {
        ListNode slow = head, fast = head.next;
        while (fast != null && fast.next != null) {
            slow = slow.next;
            fast = fast.next.next;
        }
        return slow;
    }
    
    private ListNode concat(ListNode left, ListNode middle, ListNode right) {
        ListNode dummy = new ListNode(0), tail = dummy;
        
        tail.next = left; tail = getTail(tail);
        tail.next = middle; tail = getTail(tail);
        tail.next = right; tail = getTail(tail);
        return dummy.next;
    }
    
    private ListNode getTail(ListNode head) {
        if (head == null) {
           return null;
        } 
       
        while (head.next != null) {
            head = head.next;
        }
        return head;
    }
}
Mergesort

Mergesort is based on divide-and-conquer paradigm. It involves the following three steps:

Divide the array into two (or more) subarrays.

Sort each subarray (Conquer).

Merge them into one.

Implement Mergesort in Java using Arrays

public class MergeSortArray {

    public void sortArray (int[] arr, int left, int right) {
        
        if (left < right) {
            int mid = left + (right - left)/2;
            sortArray (arr, left, mid);
            sortArray (arr, mid+1, right);
            mergeArray (arr, left, mid, right);
        }
    }
    
    private void mergeArray (int[] arr, int left, int mid, int right) {
        
        int n1 = mid - left + 1;
        int n2 = right - mid;
        
        int[] L = new int[n1];
        int[] R = new int[n2];
        
        for (int i=0; i < n1; i++) {
            L[i] = arr[left + i];        
        }
        for (int j=0; j < n2; j++) {
            R[j] = arr[mid + 1 + j];
        }
        
        /* Merge the temp arrays */         
        // Initial indexes of first and second subarrays
        int i = 0, j = 0;
 
        // Initial index of merged subarry array
        int k = left;
        while (i < n1 && j < n2) {
            if (L[i] <= R[j]){
                arr[k] = L[i];
                i++;
            } else {
                arr[k] = R[j];
                j++;
            }
            k++;
        }
 
        /* Copy remaining elements of L[] if any */
        while (i < n1) {
            arr[k] = L[i];
            i++;
            k++;
        }
 
        /* Copy remaining elements of R[] if any */
        while (j < n2) {
            arr[k] = R[j];
            j++;
            k++;
        }
    }
}

Implement Mergesort in Java using LinkedList

/**
 * Definition for ListNode.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int val) {
 *         this.val = val;
 *         this.next = null;
 *     }
 * }
 */ 

public class MergeSortList {
    /**
     * @param head: The head of linked list.
     * @return: The head of the sorted linked list.
     */
    public ListNode sortList(ListNode head) {  
        
        if (head == null || head.next == null) {
            return head;
        }
        
        ListNode mid = findMid(head);
        ListNode right = sortList(mid.next);
        mid.next = null;
        ListNode left = sortList(head);
        
        return mergeList(left, right);
    }
    
    private ListNode findMid (ListNode head) {
        ListNode slow = head;
        ListNode fast = head.next;
            
        while (fast != null && fast.next != null) {
            slow = slow.next;
            fast = fast.next.next;
        }
        return slow;
    }
        
    private ListNode mergeList (ListNode left, ListNode right) {
        ListNode dummy = new ListNode(0);
        ListNode tail = dummy;
            
        while (left != null && right != null) {
            if (left.val <= right.val) {
               tail.next = left;
               left = left.next;
            } else {
                tail.next = right;
                right = right.next;
            }
            tail = tail.next;
        }    
        
        if (left != null) {
            tail.next = left;
        } else {
            tail.next = right;
        }
            
        return dummy.next;
    }
}
Heapsort

Heap sort is a comparison based sorting technique based on Binary Heap data structure. It is similar to selection sort where we first find the maximum element and place the maximum element at the end. We repeat the same process for remaining element.

Heap Sort Algorithm for sorting in increasing order:

Build a max heap from the input data.

At this point, the largest item is stored at the root of the heap. Replace it with the last item of the heap followed by reducing the size of heap by 1. Finally, heapify the root of tree.

Repeat above steps while size of heap is greater than 1.

Implement Heapsort in Java using Arrays

public class HeapSort {
    
    public void sort(int arr[]) {
    
        int n = arr.length;
 
        // Build heap (rearrange array)
        for (int i = n / 2 - 1; i >= 0; i--)
            heapify(arr, n, i);
 
        // One by one extract an element from heap
        for (int i=n-1; i>=0; i--) {
            // Move current root to end
            int temp = arr[0];
            arr[0] = arr[i];
            arr[i] = temp;
 
            // call max heapify on the reduced heap
            heapify(arr, i, 0);
        }
    }
 
    // To heapify a subtree rooted with node i which is
    // an index in arr[]. n is size of heap
    void heapify(int arr[], int n, int i) {
        int largest = i;  // Initialize largest as root
        int l = 2*i + 1;  // left = 2*i + 1
        int r = 2*i + 2;  // right = 2*i + 2
 
        // If left child is larger than root
        if (l < n && arr[l] > arr[largest])
            largest = l;
 
        // If right child is larger than largest so far
        if (r < n && arr[r] > arr[largest])
            largest = r;
 
        // If largest is not root
        if (largest != i) {
            int swap = arr[i];
            arr[i] = arr[largest];
            arr[largest] = swap;
 
            // Recursively heapify the affected sub-tree
            heapify(arr, n, largest);
        }
    }
}
References

Foundations of Algorithms, Richard E. Neapolitan, Chapter 2 Divide and Conquer

Sorting, CMU

Big-O Algorithm Complexity Cheat Sheet

Java sorting algorithms - Implementations

Merge Sort, GeeksforGeeks

Quick Sort, GeeksforGeeks

Heap Sort, GeeksforGeeks

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/67158.html

相关文章

  • JavaScript 排序算法图解(JavaScript sorting algorithms

    摘要:基础构造函数以下几种排序算法做为方法放在构造函数里。代码图解选择排序选择排序算法是一种原址比较排序算法。它的性能通常比其他的复杂度为的排序算法要好。代码划分过程图解排序没有定义用哪个排序算法,所以浏览器厂商可以自行去实现算法。 基础构造函数 以下几种排序算法做为方法放在构造函数里。 function ArrayList () { var array = []; // 交换位置...

    h9911 评论0 收藏0
  • java-工具类Collections和Arrays的设计和区别

    摘要:排序的算法是归并排序。举个例子,的算法可以不是使用归并排序,但是该算法一定要是稳定的。这个类是的一部分。官方这个类只包含操作或返回集合的静态方法。具体来说是,第一步,先把集合转换为数组,第二步,调用。和没有什么区别,只是传参有点不同。 Arrays 1.作用看类的名字,就知道是对数组(数据类型[])进行各种操作。例如,排序、查找、复制等。 排序的算法是归并排序。查找的算法是二分查找。复...

    mj 评论0 收藏0
  • Algorithms, Princeton, Coursera课程整理与回顾

    摘要:除特别标注外,文章非原创插图全部来自课程相关资源。剧透预警内容包含大作业的关键问题解法分析。为的返回值此方案下,判断只需要对应,判断使用结果准确,判断检测的对应是否为。更新此方法已确定违反的。 Princeton的算法课是目前为止我上过的最酣畅淋漓的一门课,得师如此夫复何求,在自己的记忆彻底模糊前,愿对这其中一些印象深刻的点做一次完整的整理和回顾,以表敬意。 注:这是一篇更关注个人努力...

    Luosunce 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<