资讯专栏INFORMATION COLUMN

[Algo] Maximum Expression Value 表达式最大值

why_rookie / 2764人阅读

摘要:给定一个整数数组,要求在数字之间任意添加乘号,加号和括号,使得最后表达式结果最大。这时最大值,更新。而本题中可以有和负数,所以我们要把最大表先初始化为负最大值,最小表初始化为正最小值。

Maximum Expression Value I

给定一个整数数组,要求在数字之间任意添加乘号,加号和括号,使得最后表达式结果最大。比如1121,最大值为(1+1)*(2+1),所有数字都是正数。

动态规划 复杂度

时间O(n^2) 空间O(N^2)

思路

先假设没有乘号,那最大值就是所有数加起来,然后我们考虑将其分段加入乘号,如果某一段是加号,和其他段相乘,那我们就认为那段加号的就被加了个括号。所以我们分段的过程其实就加了括号了。但是这么多数字我们可以分很多不同段,如果用搜索的话难免会有重复计算,所以这里用到动态规划,假设dp[i][j]表示总长为i的一段数字,其中前j长的哪一段中可以包含乘号,所能产生的最大值,这么一来,假设题目所给的数字有n个,那dp[n][n]就是这所有的数字组合起来既有加号又有乘号的式子的最大值了。再假设sum(k, i)表示所给数字从第k个到第i个数字的和。递推式为dp[i][j] = max(dp[i][j], dp[k][j - 1] * sum(k + 1, i)),这里i >= k >= j。其中后半部分dp[k][j - 1] * sum(k + 1, i)表示,我们把总长为i的数字分割成前k个,和k + 1到最后两部分。前半部分最大值已知,我们用它来乘以后半部分的和,用这种方法来决定哪一段只用加号。
举例说明,假设所给数字为

3 2 6

我们可以有最大值3 * 2 * 6 = 36,一开始我们有:

sum: 3 5 11
          j=0  j=1  j=2  j=3
dp:  i=0  0    0    0    0
     i=1  0    3    0    0
     i=2  0    5    0    0
     i=3  0    11   0    0

由于总长为i,其中前1位数字可以包含乘号的情况,就是所有数字都不包含乘号,所以最大值就是累加值。然后我们看总长为2开始(总长为1就是第一个数,没有计算的必要),前2位数字可以包含乘号的情况,这里我们可以有分割点k = 1时,是3 + 2 = 5k = 2时是3 * 2 = 6两种情况(k表示从第k位开始只有加号)。这时最大值6,更新dp[2][2]

          j=0  j=1  j=2  j=3
dp:  i=0  0    0    0    0
     i=1  0    3    0    0
     i=2  0    5    6    0
     i=3  0    11   0    0

然后我们看总长为3开始(总长为1就是第一个数,没有计算的必要),前2位数字可以包含乘号的情况。这里k=2时,3 * (2 + 6) = 24, k=3时,6 * 6 = 36(第一个6是dp[2][2],第二个6是我们所给数字中的6)

          j=0  j=1  j=2  j=3
dp:  i=0  0    0    0    0
     i=1  0    3    0    0
     i=2  0    5    6    0
     i=3  0    11   24   36

更新完dp[3][3]我们也就计算完所有情况了,这时可知最大值是36.

注意

全局最大max在第一个用于累加的for循环后,要置为dp[n][0],否则我们会把全部数字加起来这个组合给漏掉。

代码
public class MaxValueAddingOperator {
    public int solve(int[] nums){
        int n = nums.length;
        int[] sum = new int[n + 1];
        int[][] dp = new int[n + 1][n + 1];
        // 初始化累加数组,还有不用乘号的情况
        for(int idx = 1; idx <= n; idx++){
            sum[idx] = sum[idx - 1] + nums[idx - 1];
            dp[idx][1] = sum[idx];
        }
        int max = dp[n][0];
        // 对于总长为numOfDigitsInTotal的数字序列
        for(int numOfDigitsInTotal = 2; numOfDigitsInTotal <= n; numOfDigitsInTotal++){
            // 前numOfDigitsWithMult个数字可以包含乘号来计算的话
            for(int numOfDigitsWithMult = 2; numOfDigitsWithMult <= numOfDigitsInTotal; numOfDigitsWithMult++){
                // 从splitPointBetweenAddAndMult开始只用加号的话,求最大值
                for(int splitPointBetweenAddAndMult = numOfDigitsWithMult; splitPointBetweenAddAndMult <= numOfDigitsInTotal; splitPointBetweenAddAndMult++){
                    dp[numOfDigitsInTotal][numOfDigitsWithMult] = Math.max(dp[numOfDigitsInTotal][numOfDigitsWithMult],
                            dp[splitPointBetweenAddAndMult - 1][numOfDigitsWithMult - 1] * (sum[numOfDigitsInTotal] - sum[splitPointBetweenAddAndMult - 1]));
                }
                if(numOfDigitsInTotal == n && dp[n][numOfDigitsWithMult] > max){
                    max = dp[n][numOfDigitsWithMult];
                }
            }
        }
        return max;
    }
    
    public static void main(String[] args){
        MaxValueAddingOperator mvao = new MaxValueAddingOperator();
        int[] arr = {3, 2, 6};
        int[] arr2 = {1, 1, 2, 1};
        System.out.println(mvao.solve(arr));
        System.out.println(mvao.solve(arr2));
    }
}
Maximum Expression Value II

给定一个整数数组,要求在数字之间任意添加乘号,加号和括号,使得最后表达式结果最大。比如1121,最大值为(1+1)*(2+1),这里数字可以是0或者负数。

动态规划 复杂度

时间O(n^2) 空间O(N^2)

思路

解法和I是一样的,不过这里我们要维护一个最大表和一个最小表,这样,每次我们要乘的那个数是正数时,我们的最大值就是之前的最大值乘以这个正数,最小值就是之前的最小值乘以这个正数。如果要乘的是个负数的话,我们的最大值就是之前的最小值乘以这个正数,最小值就是之前的最大值乘以这个正数。另外,我们还要先初始化这个两个表,因为之前那题结果肯定大于0,所以我们不用初始化,不管怎么算原先矩阵中的0都会被替换掉。而本题中可以有0和负数,所以我们要把最大表先初始化为负最大值,最小表初始化为正最小值。

代码
public int solve2(int[] nums){
    int n = nums.length;
    int[] sum = new int[n + 1];
    int[][] dpMax = new int[n + 1][n + 1];
    int[][] dpMin = new int[n + 1][n + 1];
    // 初始化最大表最小表
    for(int idx1 = 1; idx1 <=n; idx1++){
        for(int idx2 = 1; idx2 <=n; idx2++){
            dpMax[idx1][idx2] = Integer.MIN_VALUE;
        }
    }
    for(int idx1 = 1; idx1 <=n; idx1++){
        for(int idx2 = 1; idx2 <=n; idx2++){
            dpMin[idx1][idx2] = Integer.MAX_VALUE;
        }
    }
    // 初始化累加表
    for(int idx = 1; idx <= n; idx++){
        sum[idx] = sum[idx - 1] + nums[idx - 1];
        dpMax[idx][1] = sum[idx];
        dpMin[idx][1] = sum[idx];
    }
    int max = dpMax[n][1];
    for(int numOfDigitsInTotal = 2; numOfDigitsInTotal <= n; numOfDigitsInTotal++){
        for(int numOfDigitsWithMult = 2; numOfDigitsWithMult <= numOfDigitsInTotal; numOfDigitsWithMult++){
            for(int splitPointBetweenAddAndMult = numOfDigitsWithMult; splitPointBetweenAddAndMult <= numOfDigitsInTotal; splitPointBetweenAddAndMult++){
                int partialSum = sum[numOfDigitsInTotal] - sum[splitPointBetweenAddAndMult - 1];
                // 根据待会要乘的数的正负号,来判断我们乘的对象是最大表还是最小表
                if(partialSum < 0){
                    dpMax[numOfDigitsInTotal][numOfDigitsWithMult] = Math.max(dpMax[numOfDigitsInTotal][numOfDigitsWithMult],
                            dpMin[splitPointBetweenAddAndMult - 1][numOfDigitsWithMult - 1] * partialSum);
                    dpMin[numOfDigitsInTotal][numOfDigitsWithMult] = Math.min(dpMin[numOfDigitsInTotal][numOfDigitsWithMult],
                            dpMax[splitPointBetweenAddAndMult - 1][numOfDigitsWithMult - 1] * partialSum);
                } else {
                    dpMax[numOfDigitsInTotal][numOfDigitsWithMult] = Math.max(dpMax[numOfDigitsInTotal][numOfDigitsWithMult],
                            dpMax[splitPointBetweenAddAndMult - 1][numOfDigitsWithMult - 1] * partialSum);
                    dpMin[numOfDigitsInTotal][numOfDigitsWithMult] = Math.min(dpMin[numOfDigitsInTotal][numOfDigitsWithMult],
                            dpMin[splitPointBetweenAddAndMult - 1][numOfDigitsWithMult - 1] * partialSum);
                }
            }
            if(numOfDigitsInTotal == n && dpMax[n][numOfDigitsWithMult] > max){
                max = dpMax[n][numOfDigitsWithMult];
            }
        }
    }
    return max;
}
后续 Follow Up

Q:如果输入是double数组怎么办?
A: 一样的做法,用第二题的解肯定没问题。

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/66181.html

相关文章

  • python learn 01 basic

    摘要:输入的模块上使用。我们看到它包含一个庞大的属性列表。默认地,它返回当前模块的属性列表。 Python Learn Part More_Info Content List 1.Python Introduce 1.1 python REPL 1.2 python helloworld.py 1.3 python help() 1.4 to python_string 1.5 dif...

    MageekChiu 评论0 收藏0
  • template7入门教程及对它的一些看法

    摘要:是的内置模板引擎,在此之前使用过,不过刚刚打开看了下,已经停止更新,并且将要被所替代。如果需要进行一些条件判断,则使用。我们就主要说一下不常用的或者其他模板引擎里没有的一些功能。 template7是framework7的内置模板引擎,在此之前使用过jquery-tmpl,不过刚刚打开github看了下,已经停止更新,并且将要被JsRender所替代。妹的,JsRender又是什么鬼啊...

    Developer 评论0 收藏0
  • template7入门教程及对它的一些看法

    摘要:是的内置模板引擎,在此之前使用过,不过刚刚打开看了下,已经停止更新,并且将要被所替代。如果需要进行一些条件判断,则使用。我们就主要说一下不常用的或者其他模板引擎里没有的一些功能。 template7是framework7的内置模板引擎,在此之前使用过jquery-tmpl,不过刚刚打开github看了下,已经停止更新,并且将要被JsRender所替代。妹的,JsRender又是什么鬼啊...

    kaka 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<