资讯专栏INFORMATION COLUMN

[LintCode/LeetCode] Rotate Image

BenCHou / 2771人阅读

摘要:两种方法,转置镜像法和公式法。首先看转置镜像法原矩阵为转置后水平镜像翻转后所以,基本的思路是两次遍历,第一次转置,第二次水平镜像翻转变换列坐标。公式法是应用了一个翻转的公式如此翻转四次即可。二者均可,并无分别。

Problem

You are given an n x n 2D matrix representing an image.
Rotate the image by 90 degrees (clockwise).

Example

Given a matrix

[
    [1,2],
    [3,4]
]

rotate it by 90 degrees (clockwise), return

[
    [3,1],
    [4,2]
]
Challenge

Do it in-place.

Note

两种方法,转置镜像法和公式法。
首先看转置-镜像法:
原矩阵为:

1  2  3             
4  5  6
7  8  9
(original)

转置后:(matrix[i][j] --> matrix[j][i])

1  4  7
2  5  8
3  6  9
(transposed)

水平镜像翻转后:(matrix[i][j] --> matrix[i][matrix.length-1-j])

7  4  1
8  5  2
9  6  3
(flipped horizontally)   

所以,基本的思路是两次遍历,第一次转置,第二次水平镜像翻转(变换列坐标)
需要注意的是,转置操作是对于左上角-右下角对角线所分割的右侧三角形矩阵进行的,即只对二分之一个矩阵进行转置;水平镜像翻转时,对列不做完全循环,而是从0到n/2。否则翻转后的前二分之一列坐标会再次被翻转回去。

公式法是应用了一个翻转90°的公式:newRow = width - oldCol, newCol = oldRow,
如此翻转四次即可。
需要注意遍历矩阵时的循环边界条件,有两种写法:

1.

for (int i = 0; i < (n+1)/2; i++) {
    for (int j = 0; j < n/2; j++) {

2.

for (int i = 0; i < n; i++) {
    for (int j = i; j < n-1-i; j++) {

第一种写法是翻转左上方四分之一个矩阵;第二种写法是翻转以对角线分割的上方的三角形矩阵。二者均可,并无分别。

Solution

转置-镜像法

public class Solution {
    public void rotate(int[][] matrix) {
        int n = matrix.length;
        for (int i = 0; i < n; i++) {
            for (int j = i; j < n; j++) {
                int temp = matrix[i][j];
                matrix[i][j] = matrix[j][i];
                matrix[j][i] = temp;
            }
        }
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n/2; j++) {
                int temp = matrix[i][j];
                matrix[i][j] = matrix[i][n-1-j];
                matrix[i][n-1-j] = temp;
            }
        }
    }
}

公式法I.

public class Solution {
    public void rotate(int[][] matrix) {
        int n = matrix.length;
        for (int i = 0; i < (n+1)/2; i++) {
            for (int j = 0; j < n/2; j++) {
                int temp = matrix[i][j];
                matrix[i][j] = matrix[n-1-j][i];
                matrix[n-1-j][i] = matrix[n-1-i][n-1-j];
                matrix[n-1-i][n-1-j] = matrix[j][n-1-i];
                matrix[j][n-1-i] = temp;
            }
        }
    }
}

公式法II.

public class Solution {
    public void rotate(int[][] matrix) {
        int n = matrix.length;
        for (int i = 0; i < n; i++) {
            for (int j = i; j < n-1-i; j++) {
                int temp = matrix[i][j];
                matrix[i][j] = matrix[n-1-j][i];
                matrix[n-1-j][i] = matrix[n-1-i][n-1-j];
                matrix[n-1-i][n-1-j] = matrix[j][n-1-i];
                matrix[j][n-1-i] = temp;
            }
        }
    }
}

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/65698.html

相关文章

  • [LintCode/LeetCode] Rotate Array

    Problem Given an array, rotate the array to the right by k steps, where k is non-negative. Example Example 1: Input: [1,2,3,4,5,6,7] and k = 3Output: [5,6,7,1,2,3,4]Explanation:rotate 1 steps to the r...

    chanthuang 评论0 收藏0
  • [LintCode/LeetCode] Rotate List

    摘要:而后吾当依除取余之法,化大为小,则指针不致于越界也。后欲寻右起第结点,令快指针先行数日,及至两指针相距为,便吟鞭东指,与慢指针策马共进。快慢指针亦止于其所焉。舞动长剑,中宫直入,直取首级,而一掌劈空,已鸿飞冥冥。自此,一代天骄,霸业已成。 Problem Given a list, rotate the list to the right by k places, where k is...

    Blackjun 评论0 收藏0
  • [LintCode/LeetCode] Word Break

    Problem Given a string s and a dictionary of words dict, determine if s can be break into a space-separated sequence of one or more dictionary words. Example Given s = lintcode, dict = [lint, code]. R...

    dunizb 评论0 收藏0
  • [LintCode/LeetCode] First Unique Character in a S

    Problem Given a string, find the first non-repeating character in it and return its index. If it doesnt exist, return -1. Example Given s = lintcode, return 0. Given s = lovelintcode, return 2. Tags A...

    Xufc 评论0 收藏0
  • [LintCode/LeetCode] Find Median From / Data Stream

    摘要:建立两个堆,一个堆就是本身,也就是一个最小堆另一个要写一个,使之成为一个最大堆。我们把遍历过的数组元素对半分到两个堆里,更大的数放在最小堆,较小的数放在最大堆。同时,确保最大堆的比最小堆大,才能从最大堆的顶端返回。 Problem Numbers keep coming, return the median of numbers at every time a new number a...

    zxhaaa 评论0 收藏0

发表评论

0条评论

BenCHou

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<