摘要:注意对边界条件的判断,是否非空,是否长度为
House Robber I Problem
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.
ExampleGiven [3, 8, 4], return 8.
Note注意对边界条件的判断,是否非空,是否长度为1.
Solutionclass Solution { public int rob(int[] nums) { if (nums == null || nums.length == 0) return 0; if (nums.length == 1) return nums[0]; int n = nums.length; int[] dp = new int[n]; dp[0] = nums[0]; dp[1] = Math.max(nums[0], nums[1]); for (int i = 2; i < n; i++) { dp[i] = Math.max(dp[i-1], dp[i-2]+nums[i]); } return dp[n-1]; } }Update 2018-9
class Solution { public int rob(int[] nums) { if (nums == null || nums.length == 0) return 0; int n = nums.length; int[] dp = new int[n+1]; dp[0] = 0; dp[1] = nums[0]; for (int i = 2; i <= n; i++) { dp[i] = Math.max(dp[i-1], dp[i-2]+nums[i-1]); } return dp[n]; } }House Robber II Problem
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.
Example 1:
Input: [2,3,2] Output: 3 Explanation: You cannot rob house 1 (money = 2) and then rob house 3 (money = 2), because they are adjacent houses.
Example 2:
Input: [1,2,3,1] Output: 4 Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3). Total amount you can rob = 1 + 3 = 4.Solution
class Solution { public int rob(int[] nums) { if (nums == null || nums.length == 0) return 0; int n = nums.length; if (n == 1) return nums[0]; int[] dp = new int[n+1]; //rob head dp[0] = 0; dp[1] = nums[0]; for (int i = 2; i < n; i++) { dp[i] = Math.max(dp[i-1], dp[i-2]+nums[i-1]); } //save head-robbed result to temp int temp = dp[n-1]; //not rob head dp[0] = 0; dp[1] = 0; for (int i = 2; i <= n; i++) { dp[i] = Math.max(dp[i-1], dp[i-2]+nums[i-1]); } //return the larger of tail-robbed and head-robbed return Math.max(dp[n], temp); } }
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/65556.html
摘要:因为取了队首就不能取队尾,所以对数组循环两次,一个从取到,一个从取到,比较两次循环后队尾元素,取较大者。注意,要先讨论当原数组位数小于时的情况。 Problem After robbing those houses on that street, the thief has found himself a new place for his thievery so that he wi...
摘要:你不能连着偷两家因为这样会触发警报系统。现在有一个数组存放着每一家中的可偷金额,问可以偷的最大金额为多少这里考验了动态编程的思想。动态编程要求我们将问题一般化,然后再找到初始情况开始这个由一般到特殊的计算过程。 House Robber I You are a professional robber planning to rob houses along a street. Each...
摘要:动态规划复杂度时间空间思路一般来说,给定一个规则,让我们求任意状态下的解,都是用动态规划。另外我们可以做一点优化,本来我们是要用一个数组来保存之前的结果的。所以我们分别算出这两个条件下的最大收益,然后取更大的就行了。可以复用的代码。 House Robber I You are a professional robber planning to rob houses along a ...
摘要:复杂度思路对于每一个位置来说,考虑两种情况分别对和再进行计算。用对已经计算过的进行保留,避免重复计算。 LeetCode[337] House Robber III The thief has found himself a new place for his thievery again. There is only one entrance to this area, calle...
摘要:前言从开始写相关的博客到现在也蛮多篇了。而且当时也没有按顺序写现在翻起来觉得蛮乱的。可能大家看着也非常不方便。所以在这里做个索引嘻嘻。顺序整理更新更新更新更新更新更新更新更新更新更新更新更新更新更新更新更新 前言 从开始写leetcode相关的博客到现在也蛮多篇了。而且当时也没有按顺序写~现在翻起来觉得蛮乱的。可能大家看着也非常不方便。所以在这里做个索引嘻嘻。 顺序整理 1~50 1...
阅读 2928·2023-04-26 02:22
阅读 2288·2021-11-17 09:33
阅读 3130·2021-09-22 16:06
阅读 1066·2021-09-22 15:54
阅读 3531·2019-08-29 13:44
阅读 1908·2019-08-29 12:37
阅读 1319·2019-08-26 14:04
阅读 1907·2019-08-26 11:57