摘要:投射法复杂度思路将二维数组上的点,分别映射到一维的坐标上。然后将两个结果相加。代码分别放到一维上来做复杂度思路分别建立行和列的数组,用来存放,在某一行,或者某一列,一共有多少人在这一个位置上。同理,来处理行的情况。
LeetCode[296] Best Meeting Point
投射法A group of two or more people wants to meet and minimize the total
travel distance. You are given a 2D grid of values 0 or 1, where each
1 marks the home of someone in the group. The distance is calculated
using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| +
|p2.y - p1.y|.For example, given three people living at (0,0), (0,4), and (2,2):
1 - 0 - 0 - 0 - 1
0 - 0 - 0 - 0 - 0
0 - 0 - 1 - 0 - 0
The point (0,2) is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.
复杂度
O(MN), O(N)
思路
将二维数组上的点,分别映射到一维的坐标上。然后将两个结果相加。先考虑在一条直线上不同的点之间的最小距离值。再将所有的点映射到一条纵线上,考虑他们之间的距离的最小值。
代码
// O(MN) public int minTotalDistance(int[][] grid) { // means which row has the people on it ListBucket Sortrow = new LinkedList<>(); // means which col has the people on it List col = new LinkedList<>(); for(int i = 0; i< grid.length; i ++) { for(int j = 0; j < grid[0].length; j ++) { if(grid[i][j] == 1) { row.add(i); col.add(j); } } } // 分别放到一维上来做; return getMin(row) + getMin(col); } public int getMin(List list) { int res = 0; Collections.sort(list); int i = 0, j = list.size() - 1; while(i < j) { res += list.get(j --) - list.get(i ++); } return res; }
复杂度
O(MN),O(N)
思路
分别建立行和列的数组,用来存放,在某一行,或者某一列,一共有多少人在这一个位置上。
假设有m个人在i列上,有n个人在第j列上,那么最少能消掉Min(m,n)=k个人,并且他们travel的距离是,2 k (j - i) / 2 = k * (j - i)。
同理,来处理行的情况。
代码
public int minTotalDistance(int[][] grid) { int[] row = new int[grid.length]; int[] col = new int[grid[0].length]; for(int i = 0; i < grid.length; i ++) { for(int j = 0; j < grid[0].length; j ++) { if(grid[i][j] == 1) { ++ row[i]; ++ col[j]; } } } int res = 0; for(int[] k : new int[][]{row, col}) { int i = 0, j = k.length - 1; while(i < j) { // 在i,和j位置分别有多少人,取最小的人作为能消去的最少的人 int pair = Math.min(k[i], k[j]); // (j - i) / 2 * 2 pair = pair * (j - i), 是这么多人走过的路 res += pair * (j - i); // 要减去能消掉的人; if((k[i] -= pair) == 0) i ++; if((k[j] -= pair) == 0) j --; } } return res; }
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/65238.html
Problem A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance ...
摘要:为了尽量保证右边的点向左走,左边的点向右走,那我们就应该去这些点中间的点作为交点。由于是曼哈顿距离,我们可以分开计算横坐标和纵坐标,结果是一样的。 Best Meeting Point A group of two or more people wants to meet and minimize the total travel distance. You are given a ...
Problem A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance ...
Problem Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si < ei), find the minimum number of conference rooms required. Example 1: Input: [[0, 30],[5,...
摘要:排序法复杂度时间空间思路这题和很像,我们按开始时间把这些都给排序后,就挨个检查是否有冲突就行了。有冲突的定义是开始时间小于之前最晚的结束时间。这里之前最晚的结束时间不一定是上一个的结束时间,所以我们更新的时候要取最大值。 Meeting Rooms Given an array of meeting time intervals consisting of start and end...
阅读 1030·2021-11-19 09:40
阅读 921·2021-11-12 10:36
阅读 1174·2021-09-22 16:04
阅读 3060·2021-09-09 11:39
阅读 1221·2019-08-30 10:51
阅读 1852·2019-08-30 10:48
阅读 1176·2019-08-29 16:30
阅读 422·2019-08-29 12:37