摘要:单次选择最大体积动规经典题目,用数组表示书包空间为的时候能装的物品最大容量。注意的空间要给,因为我们要求的是第个值,否则会抛出。依然是以背包空间为限制条件,所不同的是取的是价值较大值,而非体积较大值。
Backpack I Problem 单次选择+最大体积
Given n items with size Ai, an integer m denotes the size of a backpack. How full you can fill this backpack?
NoticeYou can not divide any item into small pieces.
ExampleIf we have 4 items with size [2, 3, 5, 7], the backpack size is 11, we can select [2, 3, 5], so that the max size we can fill this backpack is 10. If the backpack size is 12. we can select [2, 3, 7] so that we can fulfill the backpack.
You function should return the max size we can fill in the given backpack.
ChallengeO(n x m) time and O(m) memory.
O(n x m) memory is also acceptable if you do not know how to optimize memory.
Note动规经典题目,用数组dp[i]表示书包空间为i的时候能装的A物品最大容量。两次循环,外部遍历数组A,内部反向遍历数组dp,若j即背包容量大于等于物品体积A[i],则取前i-1次循环求得的最大容量dp[j],和背包体积为j-A[i]时的最大容量dp[j-A[i]]与第i个物品体积A[i]之和即dp[j-A[i]]+A[i]的较大值,作为本次循环后的最大容量dp[i]。
注意dp[]的空间要给m+1,因为我们要求的是第m+1个值dp[m],否则会抛出OutOfBoundException。
Solutionpublic class Solution { public int backPack(int m, int[] A) { int[] dp = new int[m+1]; for (int i = 0; i < A.length; i++) { for (int j = m; j > 0; j--) { if (j >= A[i]) { dp[j] = Math.max(dp[j], dp[j-A[i]] + A[i]); } } } return dp[m]; } }Backpack II Problem 单次选择+最大价值
Given n items with size A[i] and value V[i], and a backpack with size m. What"s the maximum value can you put into the backpack?
NoticeYou cannot divide item into small pieces and the total size of items you choose should smaller or equal to m.
ExampleGiven 4 items with size [2, 3, 5, 7] and value [1, 5, 2, 4], and a backpack with size 10. The maximum value is 9.
ChallengeO(n x m) memory is acceptable, can you do it in O(m) memory?
Note和BackPack I基本一致。依然是以背包空间为限制条件,所不同的是dp[j]取的是价值较大值,而非体积较大值。所以只要把dp[j-A[i]]+A[i]换成dp[j-A[i]]+V[i]就可以了。
Solutionpublic class Solution { public int backPackII(int m, int[] A, int V[]) { int[] dp = new int[m+1]; for (int i = 0; i < A.length; i++) { for (int j = m; j > 0; j--) { if (j >= A[i]) dp[j] = Math.max(dp[j], dp[j-A[i]]+V[i]); } } return dp[m]; } }Backpack III Problem 重复选择+最大价值
Given n kind of items with size Ai and value Vi( each item has an infinite number available) and a backpack with size m. What"s the maximum value can you put into the backpack?
NoticeYou cannot divide item into small pieces and the total size of items you choose should smaller or equal to m.
ExampleGiven 4 items with size [2, 3, 5, 7] and value [1, 5, 2, 4], and a backpack with size 10. The maximum value is 15.
Solutionpublic class Solution { public int backPackIII(int[] A, int[] V, int m) { int[] dp = new int[m+1]; for (int i = 0; i < A.length; i++) { for (int j = 1; j <= m; j++) { if (j >= A[i]) dp[j] = Math.max(dp[j], dp[j-A[i]]+V[i]); } } return dp[m]; } }Backpack IV Problem 重复选择+唯一排列+装满可能性总数
Given n items with size nums[i] which an integer array and all positive numbers, no duplicates. An integer target denotes the size of a backpack. Find the number of possible fill the backpack.
Each item may be chosen unlimited number of times
ExampleGiven candidate items [2,3,6,7] and target 7,
A solution set is:
[7] [2, 2, 3] return 2Solution
public class Solution { public int backPackIV(int[] nums, int target) { int[] dp = new int[target+1]; dp[0] = 1; for (int i = 0; i < nums.length; i++) { for (int j = 1; j <= target; j++) { if (nums[i] == j) dp[j]++; else if (nums[i] < j) dp[j] += dp[j-nums[i]]; } } return dp[target]; } }Backpack V Problem 单次选择+装满可能性总数
Given n items with size nums[i] which an integer array and all positive numbers. An integer target denotes the size of a backpack. Find the number of possible fill the backpack.
Each item may only be used once
ExampleGiven candidate items [1,2,3,3,7] and target 7,
A solution set is:
[7] [1, 3, 3] return 2Solution
public class Solution { public int backPackV(int[] nums, int target) { int[] dp = new int[target+1]; dp[0] = 1; for (int i = 0; i < nums.length; i++) { for (int j = target; j >= 0; j--) { if (j >= nums[i]) dp[j] += dp[j-nums[i]]; } } return dp[target]; } }Backpack VI aka: Combination Sum IV Problem 重复选择+不同排列+装满可能性总数
Given an integer array nums with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
NoticeThe different sequences are counted as different combinations.
ExampleGiven nums = [1, 2, 4], target = 4
The possible combination ways are:
[1, 1, 1, 1] [1, 1, 2] [1, 2, 1] [2, 1, 1] [2, 2] [4] return 6Solution
public class Solution { public int backPackVI(int[] nums, int target) { int[] dp = new int[target+1]; dp[0] = 1; for (int i = 1; i <= target; i++) { for (int num: nums) { if (num <= i) dp[i] += dp[i-num]; } } return dp[target]; } }
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/65054.html
摘要:动规经典题目,用数组表示书包空间为的时候能装的物品最大容量。注意的空间要给,因为我们要求的是第个值,否则会抛出。依然是以背包空间为限制条件,所不同的是取的是价值较大值,而非体积较大值。 Backpack Problem Given n items with size Ai, an integer m denotes the size of a backpack. How full yo...
摘要:整数转罗马数字罗马数字包含以下七种字符,,,,,和。字符数值例如,罗马数字写做,即为两个并列的。通常情况下,罗马数字中小的数字在大的数字的右边。同样地,数字表示为。给定一个整数,将其转为罗马数字。 LeetCode12.整数转罗马数字 JavaScript 罗马数字包含以下七种字符:I, V, X, L,C,D 和 M。 字符 数值 I 1 V...
摘要:本套课程包含两大部分,第一部分是基础部分,也是重要部分,参考官方文档结构,针对内容之间的关联性和前后顺序进行合理调整。 showImg(https://segmentfault.com/img/bVbpBA0?w=1460&h=400); 讲师简介: iview 核心开发者,iview-admin 作者,百万级虚拟渲染表格组件 vue-bigdata-table 作者。目前就职于知名互...
摘要:和唯一的不同是组合中不能存在重复的元素,因此,在递归时将初始位即可。 Combination Sum I Problem Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T...
摘要:罗马数字转整数罗马数字包含以下七种字符,,,,,和。字符数值例如,罗马数字写做,即为两个并列的。通常情况下,罗马数字中小的数字在大的数字的右边。同样地,数字表示为。给定一个罗马数字,将其转换成整数。 LeetCode13.罗马数字转整数 JavaScript 罗马数字包含以下七种字符: ·I, V, X, L,C,D 和 M。 字符 数值 I ...
阅读 3488·2021-11-17 17:01
阅读 3899·2021-11-08 13:12
阅读 2451·2021-10-08 10:04
阅读 648·2021-09-29 09:35
阅读 1377·2021-09-26 10:12
阅读 1953·2021-09-07 09:58
阅读 1937·2019-08-30 15:55
阅读 2117·2019-08-30 13:14