摘要:这样,我们可以保证队列里的元素是从头到尾降序的,由于队列里只有窗口内的数,所以他们其实就是窗口内第一大,第二大,第三大的数。
Sliding Window Maximum
优先队列 复杂度Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example, Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.
Window position Max --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7Therefore, return the max sliding window as [3,3,5,5,6,7].
Note: You may assume k is always valid, ie: 1 ≤ k ≤ input array"s size for non-empty array.
Follow up: Could you solve it in linear time?
Hint:
How about using a data structure such as deque (double-ended queue)? The queue size need not be the same as the window’s size. Remove redundant elements and the queue should store only elements that need to be considered.
时间 O(NlogK) 空间 O(K)
思路维护一个大小为K的最大堆,依此维护一个大小为K的窗口,每次读入一个新数,都把堆中窗口最左边的数扔掉,再把新数加入堆中,这样堆顶就是这个窗口内最大的值。
注意-结果数组的大小是nums.length + 1 - k, 赋值时下标也是i + 1 - k
代码public class Solution { public int[] maxSlidingWindow(int[] nums, int k) { if(nums == null || nums.length == 0) return new int[0]; PriorityQueue双向队列 复杂度pq = new PriorityQueue (Collections.reverseOrder()); int[] res = new int[nums.length + 1 - k]; for(int i = 0; i < nums.length; i++){ // 把窗口最左边的数去掉 if(i >= k) pq.remove(nums[i - k]); // 把新的数加入窗口的堆中 pq.offer(nums[i]); // 堆顶就是窗口的最大值 if(i + 1 >= k) res[i + 1 - k] = pq.peek(); } return res; } }
时间 O(N) 空间 O(K)
思路我们用双向队列可以在O(N)时间内解决这题。当我们遇到新的数时,将新的数和双向队列的末尾比较,如果末尾比新数小,则把末尾扔掉,直到该队列的末尾比新数大或者队列为空的时候才住手。这样,我们可以保证队列里的元素是从头到尾降序的,由于队列里只有窗口内的数,所以他们其实就是窗口内第一大,第二大,第三大...的数。保持队列里只有窗口内数的方法和上个解法一样,也是每来一个新的把窗口最左边的扔掉,然后把新的加进去。然而由于我们在加新数的时候,已经把很多没用的数给扔了,这样队列头部的数并不一定是窗口最左边的数。这里的技巧是,我们队列中存的是那个数在原数组中的下标,这样我们既可以直到这个数的值,也可以知道该数是不是窗口最左边的数。这里为什么时间复杂度是O(N)呢?因为每个数只可能被操作最多两次,一次是加入队列的时候,一次是因为有别的更大数在后面,所以被扔掉,或者因为出了窗口而被扔掉。
代码public class Solution { public int[] maxSlidingWindow(int[] nums, int k) { if(nums == null || nums.length == 0) return new int[0]; LinkedListdeque = new LinkedList (); int[] res = new int[nums.length + 1 - k]; for(int i = 0; i < nums.length; i++){ // 每当新数进来时,如果发现队列头部的数的下标,是窗口最左边数的下标,则扔掉 if(!deque.isEmpty() && deque.peekFirst() == i - k) deque.poll(); // 把队列尾部所有比新数小的都扔掉,保证队列是降序的 while(!deque.isEmpty() && nums[deque.peekLast()] < nums[i]) deque.removeLast(); // 加入新数 deque.offerLast(i); // 队列头部就是该窗口内第一大的 if((i + 1) >= k) res[i + 1 - k] = nums[deque.peek()]; } return res; } }
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/64697.html
摘要:题目要求假设有一个数组和一个长度为的窗口,数组长度。当窗口右滑时,会删除下标上的值,并加入下标上的值。此时中记录的值编程了,并返回当前的最大值为。一旦最大值失效,就从窗口中重新找一个最大值就好了。 题目要求 Given an array nums, there is a sliding window of size k which is moving from the very lef...
摘要:你只可以看到在滑动窗口内的数字。滑动窗口每次只向右移动一位。返回滑动窗口最大值。算法思路暴力破解法用两个指针,分别指向窗口的起始位置和终止位置,然后遍历窗口中的数据,求出最大值向前移动两个指针,然后操作,直到遍历数据完成位置。 Time:2019/4/16Title: Sliding Window MaximumDifficulty: DifficultyAuthor: 小鹿 题目...
摘要:丢弃队首那些超出窗口长度的元素队首的元素都是比后来加入元素大的元素,所以存储的对应的元素是从小到大 Problem Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only...
摘要:窗口前进,删队首元素保证队列降序加入当前元素下标从开始,每一次循环都将队首元素加入结果数组 Sliding Window Maximum Problem Given an array of n integer with duplicate number, and a moving window(size k), move the window at each iteration fro...
摘要:题目链接这道题用,注意一下存的是,因为要判断是否到最大的值,是通过现在的和第一个的差来判断的。 Sliding Window Maximum 题目链接:https://leetcode.com/problems... 这道题用deque,注意一下存的是index,因为要判断是否到最大的window值,是通过现在的index和deque第一个index的差来判断的。 public cla...
阅读 3046·2023-04-26 02:27
阅读 2763·2021-11-22 13:54
阅读 902·2021-11-12 10:36
阅读 3753·2021-10-09 09:44
阅读 3177·2021-10-09 09:41
阅读 1222·2021-09-22 10:02
阅读 2833·2019-08-30 15:56
阅读 3103·2019-08-30 11:02