资讯专栏INFORMATION COLUMN

编程面试的10大算法概念汇总

shusen / 2522人阅读

摘要:满二叉树除叶子节点以为的每个节点都有两个孩子。完全二叉树可以看成是可以有若干额外向左靠的叶子节点的完美二叉树。

以下是在编程面试中排名前10的算法相关的概念,我会通过一些简单的例子来阐述这些概念。由于完全掌握这些概念需要更多的努力,因此这份列表只是作为一个介绍。本文将从Java的角度看问题,包含下面的这些概念:

字符串

链表

排序

递归 vs. 迭代

动态规划

位操作

概率问题

排列组合

1. 字符串
toCharArray() // 获得字符串对应的char数组
Arrays.sort()  // 数组排序
Arrays.toString(char[] a) // 数组转成字符串
charAt(int x) // 获得某个索引处的字符
length() // 字符串长度
length // 数组大小
2. 链表

在Java中,链表的实现非常简单,每个节点Node都有一个值val和指向下个节点的链接next。

class Node {
    int val;
    Node next; 
    Node(int x) {
        val = x;
    next = null;
    }
}

链表两个著名的应用是栈Stack和队列Queue。
栈:

class Stack{
    Node top; 

    public Node peek(){
        if(top != null){
            return top;
        }

        return null;
    }

    public Node pop(){
        if(top == null){
            return null;
        }else{
            Node temp = new Node(top.val);
            top = top.next;
            return temp;    
        }
    }

    public void push(Node n){
        if(n != null){
            n.next = top;
            top = n;
        }
    }
}

队列:

class Queue{
    Node first, last;
    public void enqueue(Node n){
        if(first == null){
            first = n;
            last = first;
        }else{
            last.next = n;
            last = n;
        }
    }
    public Node dequeue(){
        if(first == null){
            return null;
        }else{
            Node temp = new Node(first.val);
            first = first.next;
            return temp;
        }   
    }
}
3. 树

这里的树通常是指二叉树,每个节点都包含一个左孩子节点和右孩子节点,像下面这样:

class TreeNode{
    int value;
    TreeNode left;
    TreeNode right;
}

下面是与树相关的一些概念:

平衡 vs. 非平衡:平衡二叉树中,每个节点的左右子树的深度相差至多为1(1或0)。

满二叉树(Full Binary Tree):除叶子节点以为的每个节点都有两个孩子。

完美二叉树(Perfect Binary Tree):是具有下列性质的满二叉树:所有的叶子节点都有相同的深度或处在同一层次,且每个父节点都必须有两个孩子。

完全二叉树(Complete Binary Tree):二叉树中,可能除了最后一个,每一层都被完全填满,且所有节点都必须尽可能想左靠。

译者注:完美二叉树也隐约称为完全二叉树。完美二叉树的一个例子是一个人在给定深度的祖先图,因为每个人都一定有两个生父母。完全二叉树可以看成是可以有若干额外向左靠的叶子节点的完美二叉树。疑问:完美二叉树和满二叉树的区别?(参考:http://xlinux.nist.gov/dads/HTML/perfectBinaryTree.html)

4. 图

图相关的问题主要集中在深度优先搜索(depth first search)和广度优先搜索(breath first search)。
下面是一个简单的图广度优先搜索的实现。
1) 定义GraphNode

class GraphNode{ 
    int val;
    GraphNode next;
    GraphNode[] neighbors;
    boolean visited;

    GraphNode(int x) {
        val = x;
    }

    GraphNode(int x, GraphNode[] n){
        val = x;
        neighbors = n;
    }

    public String toString(){
        return "value: "+ this.val; 
    }
}

2) 定义一个队列Queue

class Queue{
    GraphNode first, last;

    public void enqueue(GraphNode n){
        if(first == null){
            first = n;
            last = first;
        }else{
            last.next = n;
            last = n;
        }
    }

    public GraphNode dequeue(){
        if(first == null){
            return null;
        }else{
            GraphNode temp = new GraphNode(first.val, first.neighbors);
            first = first.next;
            return temp;
        }   
    }
}

3) 用队列Queue实现广度优先搜索

public class GraphTest {

    public static void main(String[] args) {
        GraphNode n1 = new GraphNode(1); 
        GraphNode n2 = new GraphNode(2); 
        GraphNode n3 = new GraphNode(3); 
        GraphNode n4 = new GraphNode(4); 
        GraphNode n5 = new GraphNode(5); 

        n1.neighbors = new GraphNode[]{n2,n3,n5};
        n2.neighbors = new GraphNode[]{n1,n4};
        n3.neighbors = new GraphNode[]{n1,n4,n5};
        n4.neighbors = new GraphNode[]{n2,n3,n5};
        n5.neighbors = new GraphNode[]{n1,n3,n4};

        breathFirstSearch(n1, 5);
    }

    public static void breathFirstSearch(GraphNode root, int x){
        if(root.val == x)
            System.out.println("find in root");

        Queue queue = new Queue();
        root.visited = true;
        queue.enqueue(root);

        while(queue.first != null){
            GraphNode c = (GraphNode) queue.dequeue();
            for(GraphNode n: c.neighbors){

                if(!n.visited){
                    System.out.print(n + " ");
                    n.visited = true;
                    if(n.val == x)
                        System.out.println("Find "+n);
                    queue.enqueue(n);
                }
            }
        }
    }
}

Output:

value: 2 value: 3 value: 5 Find value: 5
value: 4
5. 排序

下面是不同排序算法的时间复杂度,你可以去wiki看一下这些算法的基本思想。

Algorithm Average Time Worst Time Space
冒泡排序 n^2 n^2 1
选择排序 n^2 n^2 1
Counting Sort n+k n+k n+k
Insertion sort n^2 n^2
Quick sort n log(n) n^2
Merge sort n log(n) n log(n) depends

另外,这里有一些实现/演示:: Counting sort、Mergesort、 Quicksort、 InsertionSort。

《视觉直观感受 7 种常用的排序算法》

《视频: 6分钟演示15种排序算法》

6. 递归 vs. 迭代

对程序员来说,递归应该是一个与生俱来的思想(a built-in thought),可以通过一个简单的例子来说明。

问题: 有n步台阶,一次只能上1步或2步,共有多少种走法。

步骤1:找到走完前n步台阶和前n-1步台阶之间的关系。

为了走完n步台阶,只有两种方法:从n-1步台阶爬1步走到或从n-2步台阶处爬2步走到。如果f(n)是爬到第n步台阶的方法数,那么f(n) = f(n-1) + f(n-2)。

步骤2: 确保开始条件是正确的。

f(0) = 0;
f(1) = 1;

public static int f(int n){
    if(n <= 2) return n;
    int x = f(n-1) + f(n-2);
    return x;
}

递归方法的时间复杂度是n的指数级,因为有很多冗余的计算,如下:

f(5)
f(4) + f(3)
f(3) + f(2) + f(2) + f(1)
f(2) + f(1) + f(1) + f(0) + f(1) + f(0) + f(1)
f(1) + f(0) + f(1) + f(1) + f(0) + f(1) + f(0) + f(1)

直接的想法是将递归转换为迭代:

public static int f(int n) {

    if (n <= 2){
        return n;
    }

    int first = 1, second = 2;
    int third = 0;

    for (int i = 3; i <= n; i++) {
        third = first + second;
        first = second;
        second = third;
    }

    return third;
}

对这个例子而言,迭代花费的时间更少,你可能也想看看Recursion vs Iteration。

7. 动态规划

动态规划是解决下面这些性质类问题的技术:

一个问题可以通过更小子问题的解决方法来解决(译者注:即问题的最优解包含了其子问题的最优解,也就是最优子结构性质)。

有些子问题的解可能需要计算多次(译者注:也就是子问题重叠性质)。

子问题的解存储在一张表格里,这样每个子问题只用计算一次。

需要额外的空间以节省时间。

爬台阶问题完全符合上面的四条性质,因此可以用动态规划法来解决。

public static int[] A = new int[100];

public static int f3(int n) {
    if (n <= 2)
        A[n]= n;

    if(A[n] > 0)
        return A[n];
    else
        A[n] = f3(n-1) + f3(n-2);//store results so only calculate once!
    return A[n];
}
8. 位操作
OR (I) AND (&) XOR (^) Left Shift (<<) Right Shift (>>) Not (~)
1 0=1 1&0=0 1^0=1 0010<<2=1000 1100>>2=0011 | ~1=0

获得给定数字n的第i位:(i从0计数并从右边开始)

public static boolean getBit(int num, int i){
    int result = num & (1<

例如,获得数字10的第2位:
i=1, n=10
1<<1= 10
1010&10=10
10 is not 0, so return true;

9. 概率问题

解决概率相关的问题通常需要很好的规划了解问题(formatting the problem),这里刚好有一个这类问题的简单例子:

一个房间里有50个人,那么至少有两个人生日相同的概率是多少?(忽略闰年的事实,也就是一年365天)

计算某些事情的概率很多时候都可以转换成先计算其相对面。在这个例子里,我们可以计算所有人生日都互不相同的概率,也就是:365/365 + 364/365 + 363/365 + 365-n/365 + 365-49/365,这样至少两个人生日相同的概率就是1 – 这个值。

public static double caculateProbability(int n){
    double x = 1; 

    for(int i=0; i

calculateProbability(50) = 0.97

10. 排列组合

组合和排列的区别在于次序是否关键。

如果你有任何问题请在下面评论。

参考/推荐资料:
1. Binary tree
2. Introduction to Dynamic Programming
3. UTSA Dynamic Programming slides
4. Birthday paradox
5. Cracking the Coding Interview: 150 Programming Interview Questions and Solutions, Gayle Laakmann McDowell


原文 Top 10 Algorithms for Coding Interview
转自 伯乐在线 - 敏敏

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/64001.html

相关文章

  • Java面试 32个核心必考点完全解析

    摘要:如问到是否使用某框架,实际是是问该框架的使用场景,有什么特点,和同类可框架对比一系列的问题。这两个方向的区分点在于工作方向的侧重点不同。 [TOC] 这是一份来自哔哩哔哩的Java面试Java面试 32个核心必考点完全解析(完) 课程预习 1.1 课程内容分为三个模块 基础模块: 技术岗位与面试 计算机基础 JVM原理 多线程 设计模式 数据结构与算法 应用模块: 常用工具集 ...

    JiaXinYi 评论0 收藏0
  • Java开发常见问题集锦

    摘要:下面是一些常见的理解性问题,每一个问题尽量用图或代码去描述。内容全部来自,包括基本语法数组集合类泛型面向对象垃圾回收异常控制输入输出和内存。不断更新,欢迎大家提出有趣味的问题和意见。 程序员经常可以通过搜索或者记忆来完成代码,但是许多时候并不真正理解为什么那样写。也就是说,有一定经验的程序员不会犯一些低级的语法错误,但是因为不深入理解有可能造成一些高级错误,比如说运行无效率,代码难De...

    MSchumi 评论0 收藏0
  • 前端资源系列(4)-前端学习资源分享&前端面试资源汇总

    摘要:特意对前端学习资源做一个汇总,方便自己学习查阅参考,和好友们共同进步。 特意对前端学习资源做一个汇总,方便自己学习查阅参考,和好友们共同进步。 本以为自己收藏的站点多,可以很快搞定,没想到一入汇总深似海。还有很多不足&遗漏的地方,欢迎补充。有错误的地方,还请斧正... 托管: welcome to git,欢迎交流,感谢star 有好友反应和斧正,会及时更新,平时业务工作时也会不定期更...

    princekin 评论0 收藏0
  • 十年铲码,八体系超千篇数百万字技术笔记系列汇总(GitBook 悦享版)

    摘要:十年铲码,八大体系超千篇数百万字技术笔记系列汇总悦享版十年铲码两茫茫,纵思量,却易忘不觉笔者步入程序员已有十年。十年之期,正巧笔者从阿里离开,重回打印制造业的怀抱,希望能依托于设备优势逐步真正构建分布式制造网络。 showImg(https://segmentfault.com/img/remote/1460000020151971); 十年铲码,八大体系超千篇数百万字技术笔记系列汇总...

    Ashin 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<