摘要:原文来自前端时间遇到个问题,就是判断百度地图里的多个任意多边形区域是否重复,在网上看了很多的文章都没有找到解决方案,功夫不负有心人,在网上找到个可以判断是否重复的,但是在包含的情况下就不能判断,后来自己加入根据点判断点是否在多边形内来判断重
原文来自 taoeer.top
前端时间遇到个问题,就是判断百度地图里的多个任意多边形区域是否重复,在网上看了很多的文章都没有找到解决方案,功夫不负有心人,在网上找到个可以判断是否重复的,但是在包含的情况下就不能判断,后来自己加入根据点判断点是否在多边形内来判断重复,问题已解决,在此把代码贴出来,供大家参考
//#region 验证两个面是否相交的算法 (此函数摘抄自网络) function intersectsPolygonAndPolygon (polygon1LinearRings, polygon2LinearRings) { // polygon1LinearRings : array[LinearRing,...] function intersectsByPolygon (polygon1LinearRings, polygon2LinearRings) { var intersect = false; intersect = intersectsByLinearRings(polygon1LinearRings, polygon2LinearRings); if(!intersect) { // check if this poly contains points of the ring/linestring for(i=0, len=polygon2LinearRings.length; i0) { contained = containsPointByLinearRing(point, LinearRings[0]); if( numRings > 1) { // check interior rings var hole; for(var i=1; i 0) { fig = parseFloat(num.toPrecision(sig)); } return fig; } var digs = 14; var px = approx(point.x, digs); var py = approx(point.y, digs); function getX(y, x1, y1, x2, y2) { return (y - y2) * ((x2 - x1) / (y2 - y1)) + x2; } var numSeg = LinearRing.length - 1; var start, end, x1, y1, x2, y2, cx, cy; var crosses = 0; for(var i=0; i = x1 && px <= x2) || // right or vert x1 >= x2 && (px <= x1 && px >= x2)) { // left or vert // point on edge crosses = -1; break; } } // ignore other horizontal edges continue; } cx = approx(getX(py, x1, y1, x2, y2), digs); if(cx == px) { // point on line if(y1 < y2 && (py >= y1 && py <= y2) || // upward y1 > y2 && (py <= y1 && py >= y2)) { // downward // point on edge crosses = -1; break; } } if(cx <= px) { // no crossing to the right continue; } if(x1 != x2 && (cx < Math.min(x1, x2) || cx > Math.max(x1, x2))) { // no crossing continue; } if(y1 < y2 && (py >= y1 && py < y2) || // upward y1 > y2 && (py < y1 && py >= y2)) { // downward ++crosses; } } var contained = (crosses == -1) ? // on edge 1 : // even (out) or odd (in) !!(crosses & 1); return contained; } function intersectsByLinearRings (LinearRing1, LinearRings2) { var intersect = false; var segs1 = getSortedSegments(LinearRing1); var segs2 = getSortedSegments(LinearRings2); var seg1, seg1x1, seg1x2, seg1y1, seg1y2, seg2, seg2y1, seg2y2; // sweep right outer: for(var i=0, len=segs1.length; i seg1x2) { // seg1 still left of seg2 break; } if(seg2.x2 < seg1x1) { // seg2 still left of seg1 continue; } seg2y1 = seg2.y1; seg2y2 = seg2.y2; if(Math.min(seg2y1, seg2y2) > Math.max(seg1y1, seg1y2)) { // seg2 above seg1 continue; } if(Math.max(seg2y1, seg2y2) < Math.min(seg1y1, seg1y2)) { // seg2 below seg1 continue; } if(segmentsIntersect(seg1, seg2)) { intersect = true; break outer; } } } return intersect; } function getSortedSegments(points) { var numSeg = points.length - 1; var segments = new Array(numSeg), point1, point2; for(var i=0; i = 0 && along1 <= 1 && along2 >=0 && along2 <= 1) { // intersect if(!point) { intersection = true; } else { // calculate the intersection point var x = seg1.x1 + (along1 * x12_11); var y = seg1.y1 + (along1 * y12_11); intersection = { "x":x, "y":y }; } } } if(tolerance) { var dist; if(intersection) { if(point) { var segs = [seg1, seg2]; var seg, x, y; // check segment endpoints for proximity to intersection // set intersection to first endpoint within the tolerance outer: for(var i=0; i<2; ++i) { seg = segs[i]; for(var j=1; j<3; ++j) { x = seg["x" + j]; y = seg["y" + j]; dist = Math.sqrt( Math.pow(x - intersection.x, 2) + Math.pow(y - intersection.y, 2) ); if(dist < tolerance) { intersection.x = x; intersection.y = y; break outer; } } } } } else { // no calculated intersection, but segments could be within // the tolerance of one another var segs = [seg1, seg2]; var source, target, x, y, p, result; // check segment endpoints for proximity to intersection // set intersection to first endpoint within the tolerance outer: for(var i=0; i<2; ++i) { source = segs[i]; target = segs[(i+1)%2]; for(var j=1; j<3; ++j) { p = {x: source["x"+j], y: source["y"+j]}; result = distanceToSegment(p, target); if(result.distance < tolerance) { if(point) { intersection = { "x":p.x, "y":p.y }; } else { intersection = true; } break outer; } } } } } return intersection; }; function distanceToSegment(point, segment) { var result = distanceSquaredToSegment(point, segment); result.distance = Math.sqrt(result.distance); return result; }; function distanceSquaredToSegment(point, segment) { var x0 = point.x; var y0 = point.y; var x1 = segment.x1; var y1 = segment.y1; var x2 = segment.x2; var y2 = segment.y2; var dx = x2 - x1; var dy = y2 - y1; var along = ((dx * (x0 - x1)) + (dy * (y0 - y1))) / (Math.pow(dx, 2) + Math.pow(dy, 2)); var x, y; if(along <= 0.0) { x = x1; y = y1; } else if(along >= 1.0) { x = x2; y = y2; } else { x = x1 + along * dx; y = y1 + along * dy; } return { distance: Math.pow(x - x0, 2) + Math.pow(y - y0, 2), x: x, y: y, along: along }; } return intersectsByPolygon(polygon1LinearRings, polygon2LinearRings); } //#endregion function railsIsOverlap (rails) { var i, j, k, v, l, n; if (rails.length < 2) { return false; } for (i = 0, j = rails.length - 1; i < j; i++) { var rail = rails[i]; var railPath = rail.getPath(); for (k = i + 1, v = rails.length; k < v; k++) { var railed = rails[k]; var railedPath = railed.getPath(); for (l = 0 , n = railPath.length; l < n; l ++) { if (BMapLib.GeoUtils.isPointInPolygon(new BMap.Point(railPath[l].lng, railPath[l].lat), railed)) { layer.alert("片区不能重复"); return true; } } for (l = 0, n = railedPath.length; l < n; l ++) { if (BMapLib.GeoUtils.isPointInPolygon(new BMap.Point(railedPath[l].lng, railedPath[l].lat), rail)) { // console.log(53) layer.alert("片区不能重复"); return true; } } } } var lines = []; for ( i = 0 ; i < rails.length; i ++) { var line = rails[i].getPath(); lines.push([]); for (j = 0 ;j < line.length ; j ++) { var p = { x: line[j].lng, y: line[j].lat }; lines[i].push(p); } lines[i].push(lines[i][0]) } for (i = 0; i < lines.length - 1; i ++) { var p1 = lines[i]; for (j = i + 1; j < lines.length; j ++) { var p2 = lines[j]; if (intersectsPolygonAndPolygon(p1,p2)) { layer.alert("片区不能重复!"); return true; } } } return false; }
使用时直接调用railsIsOverlap函数就行,参数是多边形数组
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/50283.html
摘要:原文来自前端时间遇到个问题,就是判断百度地图里的多个任意多边形区域是否重复,在网上看了很多的文章都没有找到解决方案,功夫不负有心人,在网上找到个可以判断是否重复的,但是在包含的情况下就不能判断,后来自己加入根据点判断点是否在多边形内来判断重 原文来自 taoeer.top 前端时间遇到个问题,就是判断百度地图里的多个任意多边形区域是否重复,在网上看了很多的文章都没有找到解决方案,功夫不...
摘要:原文链接前些日的一个小需求用户在后台划不规则区域,区域之间不能重叠,如图判断分两步判断多变形是否有相交线段,无则进行第二步判断公式判断多变形之间是否存在顶点与多边形的包含关系代码如下点线面线段是否相交判断两多 原文链接: Fyerls Blog 前些日的一个小需求:用户在后台划不规则区域,区域之间不能重叠,如图showImg(https://segmentfault.com/img/b...
摘要:本篇目录使用入门简单使用流程链家地图找房效果区域点位气泡数据结构实现方法区域边界获取区域点位经纬度获取区域边界小结最近由于项目需要,开始调研如何使用百度地图实现类似于链家的地图找房的功能,从而开始学习百度地图相关内容。 本篇目录: 使用入门 简单使用流程 链家地图找房效果 区域点位气泡 数据结构 实现 addOverlay方法 区域边界 获取区域点位经纬度 获取区域边...
摘要:百度地图百度地图作为项目中地图可视化最重要的一部分,不止其为国人自己的地图,还因为其完善的技术文档案例和多样化的开源插件等上有的组件可以直接使用,有兴趣的同学可以直接上手这里不采用已经封装好的地图组件,而是从零开始,采用原生的百度地图一 百度地图 百度地图作为项目中地图可视化最重要的一部分,不止其为国人自己的地图,还因为其完善的技术文档案例和多样化的开源插件(echarts、Mapv等...
阅读 3464·2023-04-26 00:39
阅读 4071·2021-09-22 10:02
阅读 2553·2021-08-09 13:46
阅读 1107·2019-08-29 18:40
阅读 1453·2019-08-29 18:33
阅读 780·2019-08-29 17:14
阅读 1522·2019-08-29 12:40
阅读 2981·2019-08-28 18:07