摘要:宣布在多个地区上线新的,希望以此更多用户在云中运行他们的机器学习和人工智能工作负载。专用的云例如开发的旨在加速机器学习训练和推理地球物理数据处理模拟地震分析和分析建模等工作负载。对于机器学习来说,可以选配以缩短利用大规模训练模型的时间。
Google宣布在多个地区上线新的Nvidia GPU,希望以此更多用户在Google云中运行他们的机器学习和人工智能工作负载。
专用的云GPU(例如Nvidia开发的GPU)旨在加速机器学习训练和推理、地球物理数据处理、模拟、地震分析和分析建模等工作负载。
Google Compute Engine产品经理Chris Kleban和Ari Liberman在近日的一篇博客文章中表示,Google已经宣布开始测试Nvidia的P100 GPU。此外据称Nvidia的K80 GPU现在也已经出货了。他们补充说,Google将在这些GPU上提供“持续使用折扣”,以鼓励客户利用这些GPU。
说到Nvidia的Tesla P100 GPU,Google将其描述为“最先进的”处理器,允许客户以更少的实例提升吞吐量,同时节约成本。
Google还指出了云GPU与传统GPU相比的一些优点,首先就是提高了灵活性,因为这种GPU可让从中央处理器到内存再到磁盘大小和GPU配置的方方面面都可定制化,以满足客户的需求。
其次,就是云GPU可提高性能,以及降低成本,因为下图详细列举的持续使用折扣。最后,Google还强调了一个优点“云集成”,并称现在Google云堆栈的所有层面都提供了云GPU。
两位工程师这样写到:“对于基础设施来说,Compute Engine和Google Container Engine让你可以对虚拟机或者容器运行你的GPU工作负载。对于机器学习来说,Cloud Machine Learning可以选配GPU以缩短利用TensorFlow大规模训练模型的时间。”
Google还补充说,新增的GPU将在率先4个地区提供,包括美国东部、美国西部、欧洲西部和亚洲东部。
Google表示,看到了一些客户在一系列计算密集型任务中使用新的GPU,包括基因组学、计算金融和机器学习模型训练。Google表示,两种不同芯片的选择为客户提供了更多的灵活性,因为客户可以选择最合适的芯片来优化他们工作负载、同时平衡性能与定价。
作者:孙博
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/4977.html
摘要:谷歌今天开始在自己的公有云上提供了一个新的图形加速器,以更好的支持人工智能和虚拟桌面工作负载。此外,谷歌还支持合作伙伴的工具,该工具可以将运行在虚拟机中应用流式传输到员工的本地设备上。谷歌今天开始在自己的公有云上提供了一个新的图形加速器,以更好的支持人工智能和虚拟桌面工作负载。据悉,谷歌采用的芯片是Nvidia的P4,这让谷歌云平台支持的Nvidia GPU数量增加到4个,而且所有这些都是从...
摘要:在低端领域,在上训练模型的价格比便宜两倍。硬件定价价格变化频繁,但目前提供的实例起价为美元小时,以秒为增量计费,而更强大且性能更高的实例起价为美元小时。 随着越来越多的现代机器学习任务都需要使用GPU,了解不同GPU供应商的成本和性能trade-off变得至关重要。初创公司Rare Technologies最近发布了一个超大规模机器学习基准,聚焦GPU,比较了几家受欢迎的硬件提供商,在机器学...
摘要:谷歌云在其官方博客上公布,确认来自卡内基梅隆大学的计算机科学院院长教授将在年底接任李飞飞的谷歌云负责人职位,而李飞飞也将正式回归斯坦福大学当教授。两年前,李飞飞从斯坦福休假加入谷歌,成为谷歌云的负责人与首席科学家。今年7月的谷歌Next大会上,李飞飞宣布了两年前推进的Contact Center落地、AutoML推出自然语言和翻译服务、TPU 3.0进入谷歌云,这意味着谷歌云拥抱AI Fir...
阅读 1750·2023-04-25 22:42
阅读 2201·2021-09-22 15:16
阅读 3485·2021-08-30 09:44
阅读 484·2019-08-29 16:44
阅读 3303·2019-08-29 16:20
阅读 2511·2019-08-29 16:12
阅读 3386·2019-08-29 16:07
阅读 665·2019-08-29 15:08