摘要:的目的是为了提供一个目标检测学习的平台。注看一下这篇联名的机构发布在热乎乎的还烫手总结这个库的目的是为了尽可能介绍的关于目标检测相关的工作。由于还是初学者,所以整理不好不规范的地方,还请大家及时指出。
Object Detection Wiki
Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. Well-researched domains of object detection include face detection and pedestrian detection. Object detection has applications in many areas of computer vision, including image retrieval and video surveillance.
Object Detection
首先,Amusi先安利一个网站,打开下述链接后,既可以看到令人热血沸腾的画面。
link:
https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html
当初看到这个网址,我很惊讶,链接上写的是2015/10/09,我以为是很老的资源,但看到内容后,着实震惊了。该库在handong大神的个人主页上,但并没有Object Detection多带带的github库。受此启发,我擅自(因为还没有得到本人同意)将handong大神的Object Detection整理的内容进行精简和补充(实在班门弄斧了)。于是创建了一个名为awesome-object-detection的github库。
Awesome-Object-Detection
接下来,重点介绍一下这个“很copy”的库。awesome-object-detection的目的是为了提供一个目标检测(Object Detection)学习的平台。特点是:介绍的paper和的code(尽量更新!)由于Amusi还是初学者,目前还没有办法对每个paper进行介绍,但后续会推出paper精讲的内容,也欢迎大家star,fork并pull自己所关注到object detection的工作。
那来看看目前,awesome-object-detection里有哪些干货吧~
为了节省篇幅,这里只介绍较为重要的工作:
R-CNN三件套(R-CNN Fast R-CNN和Faster R-CNN)
Light-Head R-CNN
Cascade R-CNN
YOLO三件套(YOLOv1 YOLOv2 YOLOv3)
SSD(SSD DSSD FSSD ESSD Pelee)
R-FCN
FPN
DSOD
RetinaNet
DetNet
...
大家对常见的R-CNN系列和YOLO系列一定很熟悉了,这里Amusi也不想重复,因为显得没有逼格~这里主要简单推荐两篇paper,来凸显一下awesome-object-detection的意义。
Pelee
《Pelee: A Real-Time Object Detection System on Mobile Devices》
intro: (ICLR 2018 workshop track)
arxiv: https://arxiv.org/abs/1804.06882
github: https://github.com/Robert-JunWang/Pelee
Abstract:An increasing need of running Convolutional Neural Network (CNN) models on mobile devices with limited computing power and memory resource encourages studies on efficient model design. A number of efficient architectures have been proposed in recent years, for example, MobileNet, ShuffleNet, and NASNet-A. However, all these models are heavily dependent on depthwise separable convolution which lacks efficient implementation in most deep learning frameworks. In this study, we propose an efficient architecture named PeleeNet, which is built with conventional convolution instead. On ImageNet ILSVRC 2012 dataset, our proposed PeleeNet achieves a higher accuracy by 0.6% (71.3% vs. 70.7%) and 11% lower computational cost than MobileNet, the state-of-the-art efficient architecture. Meanwhile, PeleeNet is only 66% of the model size of MobileNet. We then propose a real-time object detection system by combining PeleeNet with Single Shot MultiBox Detector (SSD) method and optimizing the architecture for fast speed. Our proposed detection system, named Pelee, achieves 76.4% mAP (mean average precision) on PASCAL VOC2007 and 22.4 mAP on MS COCO dataset at the speed of 17.1 FPS on iPhone 6s and 23.6 FPS on iPhone 8. The result on COCO outperforms YOLOv2 in consideration of a higher precision, 13.6 times lower computational cost and 11.3 times smaller model size. The code and models are open sourced.
Quantization Mimic
《Quantization Mimic: Towards Very Tiny CNN for Object Detection》
Tsinghua University1 & The Chinese University of Hong Kong2 &SenseTime3
arxiv: https://arxiv.org/abs/1805.02152
注:看一下这篇paper联名的机构......2018-05-06发布在arXiv(热乎乎的还烫手)
Abstract:In this paper, we propose a simple and general framework for training very tiny CNNs for object detection. Due to limited representation ability, it is challenging to train very tiny networks for complicated tasks like detection. To the best of our knowledge, our method, called Quantization Mimic, is the first one focusing on very tiny networks. We utilize two types of acceleration methods: mimic and quantization. Mimic improves the performance of a student network by transfering knowledge from a teacher network. Quantization converts a full-precision network to a quantized one without large degradation of performance. If the teacher network is quantized, the search scope of the student network will be smaller. Using this property of quantization, we propose Quantization Mimic. It first quantizes the large network, then mimic a quantized small network. We suggest the operation of quantization can help student network to match the feature maps from teacher network. To evaluate the generalization of our hypothesis, we carry out experiments on various popular CNNs including VGG and Resnet, as well as different detection frameworks including Faster R-CNN and R-FCN. Experiments on Pascal VOC and WIDER FACE verify our Quantization Mimic algorithm can be applied on various settings and outperforms state-of-the-art model acceleration methods given limited computing resouces.
总结
awesome-object-detection这个库的目的是为了尽可能介绍的关于目标检测(Object Detection)相关的工作(paper and code)。由于Amusi还是初学者,所以整理不好/不规范的地方,还请大家及时指出。因为该库直接copy了handong大神的内容,所以如果有版权侵犯,我会立即删除/修改(正在联系handong大神ing)。
欢迎加入本站公开兴趣群商业智能与数据分析群
兴趣范围包括各种让数据产生价值的办法,实际应用案例分享与讨论,分析工具,ETL工具,数据仓库,数据挖掘工具,报表系统等全方位知识
QQ群:81035754
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/4757.html
摘要:基于候选区域的目标检测器滑动窗口检测器自从获得挑战赛冠军后,用进行分类成为主流。一种用于目标检测的暴力方法是从左到右从上到下滑动窗口,利用分类识别目标。这些锚点是精心挑选的,因此它们是多样的,且覆盖具有不同比例和宽高比的现实目标。 目标检测是很多计算机视觉任务的基础,不论我们需要实现图像与文字的交互还是需要识别精细类别,它都提供了可靠的信息。本文对目标检测进行了整体回顾,第一部分从RCNN...
摘要:昨天,研究院开源了,业内较佳水平的目标检测平台。项目地址是实现顶尖目标检测算法包括的软件系统。因此基本上已经是最目前包含最全与最多目标检测算法的代码库了。 昨天,Facebook AI 研究院(FAIR)开源了 Detectron,业内较佳水平的目标检测平台。据介绍,该项目自 2016 年 7 月启动,构建于 Caffe2 之上,目前支持大量机器学习算法,其中包括 Mask R-CNN(何恺...
摘要:值得一提的是每篇文章都是我用心整理的,编者一贯坚持使用通俗形象的语言给我的读者朋友们讲解机器学习深度学习的各个知识点。今天,红色石头特此将以前所有的原创文章整理出来,组成一个比较合理完整的机器学习深度学习的学习路线图,希望能够帮助到大家。 一年多来,公众号【AI有道】已经发布了 140+ 的原创文章了。内容涉及林轩田机器学习课程笔记、吴恩达 deeplearning.ai 课程笔记、机...
摘要:近日,外媒刊登了一篇机器学习与网络安全相关的资料大汇总,文中列出了相关数据源的获取途径,优秀的论文和书籍,以及丰富的教程。这个视频介绍了如何将机器学习应用于网络安全探测,时长约小时。 近日,外媒 KDnuggets 刊登了一篇机器学习与网络安全相关的资料大汇总,文中列出了相关数据源的获取途径,优秀的论文和书籍,以及丰富的教程。大部分都是作者在日常工作和学习中亲自使用并认为值得安利的纯干货。数...
阅读 1999·2021-09-13 10:23
阅读 2330·2021-09-02 09:47
阅读 3791·2021-08-16 11:01
阅读 1213·2021-07-25 21:37
阅读 1596·2019-08-30 15:56
阅读 520·2019-08-30 13:52
阅读 3126·2019-08-26 10:17
阅读 2441·2019-08-23 18:17