摘要:但年月,宣布将在年终止的开发和维护。性能并非最优,为何如此受欢迎粉丝团在过去的几年里,出现了不同的开源深度学习框架,就属于其中典型,由谷歌开发和支持,自然引发了很大的关注。
Keras作者François Chollet刚刚在Twitter贴出一张图片,是近三个月来arXiv上提到的深度学习开源框架排行:
TensorFlow排名第一,这个或许并不出意外,Keras排名第二,随后是Caffe、PyTorch和Theano,再次是MXNet、Chainer和CNTK。
Chollet在推文中补充,Keras的使用在产业界和整个数据科学圈中最占主流,产业既包括大公司也包括创业公司。不过,在研究社区,Keras的份额要小很多。
这个统计结果是使用Google Search Index得到的。
这个排名让人想起来之前François Chollet晒的另外一次排名(时间范围是2017年4月到7月,综合Github上issue、fork、contributors等数据得到的活跃度),也是TensorFlow和Keras排名第一和第二。
不过,在Github的那次排名,MXNet、PyTorch的名次明显上升。
针对近三个月来arXiv的深度学习框架排名结果,有人评论,他很遗憾Theano排名如此靠后,Theano是他的第一个框架。
深度学习的图景总是在不断变化,Theano是第一个被广泛采用的深度学习框架,由Yoshua Bengio领导的MILA创建和维护。但2017年9月,MILA宣布将在2018年终止Theano的开发和维护。Theano的离开不禁让人感慨,这也是第一个退出舞台的流行框架。
TensorFlow性能并非最优,为何如此受欢迎?粉丝团!
在过去的几年里,出现了不同的开源Python深度学习框架,TensorFlow就属于其中典型,由谷歌开发和支持,自然引发了很大的关注。
但需要指出,根据香港香港浸会大学褚晓文教授团队在2017年推出深度学习工具评测的研究报告《 基准评测 TensorFlow、Caffe、CNTK、MXNet、Torch 在三类流行深度神经网络上的表现(论文)》,TensorFlow的性能在有些时候表现并非较佳:
仅用一块GPU,FCN上Caffe、CNTK和Torch比MXNet和TensorFlow表现更好;CNN上MXNet表现出色,尤其是在大型网络时;而Caffe和CNTK在小型CNN上同样表现不俗;对于带LSTM的RNN,CNTK速度最快,比其他工具好上5到10倍。
通过将训练数据并行化,这些支持多GPU卡的深度学习工具,都有可观的吞吐量提升,同时收敛速度也提高了。多GPU卡环境下,CNTK平台在FCN和AlexNet上的可扩展性更好,而MXNet和Torch在CNN上相当出色。
这一结果,反而凸显出TensorFlow和谷歌强大的号召力,以及已经形成的生态圈的积极拉动影响。
在2017年初的这份报告中,褚晓文教授指出,硬件和软件同样重要,仅仅有硬件是不够的,没有好的软件,硬件的效能发挥不出来,这也是为什么今天有这么多深度学习软件,它们的性能有如此大的差异。
“Torch是很流行的软件,2002年就有了,那时候还没有深度学习。后来把深度学习做进去了。2014年就是Caffe,微软2015年开源了CNTK,接下来谷歌也开源了他们相应的开发平台。第三行是它的粉丝数量,目前(2017年9月)TensorFlow的粉丝团是最庞大的,有6万多个关注,相对来讲,CNTK、Caffe加起来还没有TensorFlow有影响力。最底下是开发平台的维护情况,随着硬件的提升,新的算法的提出,每个软件都是要不断的更新换代的,TensorFlow的更新是非常频繁的,基本上每一两个月就会有一个新的更新,代表着他们对软件平台的投入。”
而Keras,则是谷歌在2017年宣布,将Keras作为TensorFlow的高级API。这意味着Keras被包含在TensorFlow版本中及时更新。除了TensorFlow,Keras也可以使用Theano或者CNTK作为后端。
其他框架和公司合纵连横——中国框架何时才能上榜?
大家可以点击上面的链接仔细看TensorFlow、Caffe、PyTorch、MXNet等框架在各种应用场景下的性能。我们性能更好,但为什么用的人还不是最多?为了解决这个问题,开放神经网络交换(ONNX)格式的发布于2017年9月横空出世。
ONNX最初由微软和Facebook联合发布,后来亚马逊也加入进来,并在12月发布了V1版本。ONNX是一个表示深度学习模型的开放格式。它使用户可以更轻松地在不同框架之间转移模型。例如,它允许用户构建一个PyTorch模型,然后使用MXNet运行该模型来进行推理。
开放神经网络交换(ONNX)的Github页面
ONNX由微软、亚马逊和Facebook等公司共同发起,宣布支持ONNX的公司还有AMD、ARM、华为、 IBM、英特尔、Qualcomm等。谷歌不在这个阵营中并不令人惊讶。ONNX从一开始就支持Caffe2,Microsoft Cognitive Toolkit,MXNet和PyTorch,但与其他开源项目一样,社区也已经为TensorFlow添加了一个转换器。
在你争我抢,合纵连横之下,深度学习框架的流行趋势似乎很难预测。不过,中国的开源框架,什么时候才能在这样的排名上显露自己的名字呢?
欢迎加入本站公开兴趣群商业智能与数据分析群
兴趣范围包括各种让数据产生价值的办法,实际应用案例分享与讨论,分析工具,ETL工具,数据仓库,数据挖掘工具,报表系统等全方位知识
QQ群:81035754
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/4728.html
摘要:我们对种用于数据科学的开源深度学习库作了排名。于年月发布了第名,已经跻身于深度学习库的上半部分。是最流行的深度学习前端第位是排名较高的非框架库。颇受对数据集使用深度学习的数据科学家的青睐。深度学习库的完整列表来自几个来源。 我们对23种用于数据科学的开源深度学习库作了排名。这番排名基于权重一样大小的三个指标:Github上的活动、Stack Overflow上的活动以及谷歌搜索结果。排名结果...
摘要:此前,在月底,阿里妈妈就公布了这项开源计划,引来了业界的广泛关注。突破了现有深度学习开源框架大都面向图像语音等低维稠密数据而设计的现状,面向高维稀疏数据场景进行了深度优化,并已大规模应用于阿里妈妈的业务及生产场景。 showImg(https://segmentfault.com/img/remote/1460000017508808); 刚刚,阿里妈妈正式对外发布了X-Deep Le...
阅读 932·2021-11-24 09:39
阅读 2663·2021-09-26 09:55
阅读 10956·2021-08-23 09:47
阅读 3525·2019-08-30 15:52
阅读 831·2019-08-29 13:49
阅读 973·2019-08-23 18:00
阅读 825·2019-08-23 16:42
阅读 1591·2019-08-23 14:28