资讯专栏INFORMATION COLUMN

一个时代的终结:ImageNet 竞赛 2017 是最后一届

OnlyMyRailgun / 3102人阅读

摘要:年月日,将标志着一个时代的终结。数据集最初由斯坦福大学李飞飞等人在的一篇论文中推出,并被用于替代数据集后者在数据规模和多样性上都不如和数据集在标准化上不如。从年一个专注于图像分类的数据集,也是李飞飞开创的。

2017 年 7 月 26 日,将标志着一个时代的终结。

那一天,与计算机视觉顶会 CVPR 2017 同期举行的 Workshop——“超越 ILSVRC”(Beyond ImageNet Large Scale Visual Recogition Challenge),将宣布计算机视觉乃至整个人工智能发展史上的里程碑——IamgeNet 大规模视觉识别挑战赛将于 2017 年正式结束,此后将专注于目前尚未解决的问题及以后发展方向。

根据“超越 ILSVRC” Workshop 官网介绍,这堂研讨会的内容主要包括以下 4 点:

发表 2017 年 ILSVRC 的结果

评估 ILSVRC 2017 图像、视频物体识别、分类的当前较佳结果

探讨这与当前在计算机视觉产业中应用的最优技术的关系

受邀讲者(目前确定的有加州大学伯克利分校的 Jitendra Malik,以及斯坦福大学教授、目前谷歌云首席科学家李飞飞)发表讲话,论述在他们看来从认知视觉到机器人视觉等领域存在的挑战

ImageNet:深度学习热潮的关键推动者之一

ImageNet 可以说是计算机视觉研究人员进行大规模物体识别和检测时,最先想到的视觉大数据来源。ImageNet 数据集最初由斯坦福大学李飞飞等人在 CVPR 2009 的一篇论文中推出,并被用于替代 PASCAL 数据集(后者在数据规模和多样性上都不如 ImageNet)和 LabelMe 数据集(在标准化上不如 ImageNet)。

ImageNet 从 Caltech101(2004 年一个专注于图像分类的数据集,也是李飞飞开创的)。ImageNet 不但是计算机视觉发展的重要推动者,也是这一波深度学习热潮的关键驱动力之一。

截至 2016 年,ImageNet 中含有超过 1500 万由人手工注释的图片网址,也就是带标签的图片,标签说明了图片中的内容,超过 2.2 万个类别。其中,至少有 100 万张里面提供了边框(bounding box)。

ImageNet 数据集中“猎狐犬”的部分示例

从 2010 年以来,ImageNet 每年都会举办一次软件竞赛,也即 ImageNet 大规模视觉识别挑战赛(ILSVRC),参赛程序会相互比试,看谁能以较高的正确率对物体和场景进行分类和检测,不仅牵动着产学研三界的心,也是各团队、巨头展示实力的竞技场。

从 2010 年以来,每年的 ILSVRC 都主要包括以下 3 项,后来逐渐增多:

图像分类:算法产生图像中存在的对象类别列表

单物体定位:算法生成一个图像中含有的物体类别的列表,以及轴对齐的边框,边框指示每个物体类别的每个实例的位置和比例

物体检测:算法生成图像中含有的物体类别的列表,以及每个物体类别中每个实例的边框,边框表示这些实例的位置和比例。

2012 年,Alex Krizhevsky、Ilya Sutskever 和 Geoffrey Hinton 创造了一个“大型的深度卷积神经网络”,也即现在众所周知的 AlexNet,赢得了当年的 ILSVRC。这是史上第一次有模型在 ImageNet 数据集表现如此出色。论文中提出的方法,比如数据增强和 dropout,直到现在也在使用,那篇论文“ImageNet Classification with Deep Convolutional Networks”,迄今被引用约 7000 次,被业内普遍视为行业最重要的论文之一,真正展示了 CNN 的优点,并且以破纪录的比赛成绩实打实地做支撑。

2012 年是 CNN 首次实现 Top 5 误差率 15.4% 的一年,当时的次优项误差率为 26.2%。这个表现震惊了整个计算机视觉界。可以说,是自那时起,CNN 才成了家喻户晓的名字。

ImageNet 历届冠军及技术回顾:

中国团队在 ImageNet 竞赛中的亮眼表现

2016 年的 ILSVRC,来自中国的团队大放异彩:

CUImage(商汤和港中文),Trimps-Soushen(公安部三所),CUvideo(商汤和港中文),HikVision(海康威视),SenseCUSceneParsing(商汤和香港城市大学),NUIST(南京信息工程大学)包揽了各个项目的冠军。

从下图中可见,无论的图像分类、物体检测、物体识别,计算机的正确率都已经远远超越人类。可以说,计算机视觉在感知方面的问题已经得到了很好的解决。

那么,计算机视觉的未来的重点将是什么,ImageNet 竞赛之后,又会出现什么呢?

超越 ILSVRC:侧重图像学习和理解的 WebVision 竞赛

WebVision 数据集是通过苏黎世科技大学计算机视觉实验室的网络数据团队收集的。这一数据集的开发得到了谷歌研究院苏黎世分部的支持。

WebVision 数据集使用与 2012 年 ImageNet 竞赛相同的 1000 个类别,涵盖了直接从网络收集到的 240 万张现代图像(包括谷歌图像搜索中获得的 100 万张,以及来自 Flickr 的 140 万张图像)和元数据。

在 CVPR 2017 上,也会举办 WebVision Challenge,这一比赛更加注重对图像和视频数据的学习和理解,它有可能会成为未来的 ImageNet 竞赛吗?

摘要

我们提出 2017 年 WebVision 竞赛,这是一项公开的图像识别挑战赛,旨在基于网页图像进行深度学习,而无需人手工对实例进行标注。此前的计算机视觉挑战赛,如 ILSVRC、Places2 和 PASCAL VOC,通过提供大量的注释数据,用于模型设计和标准化的基准测试,为计算机视觉的发展发挥了关键作用。为了延续它们的精神,我们在本届 CVPR 2017 举办研讨会,进行一项基于大规模网络图像数据集的公开竞赛。WebVision 数据集包含从互联网上用爬虫收集的 240 多万的网络图像,方法是使用从 ILSVRC 2012 基准中的 1000 个语义概念生成的查询(query)。元信息(Meta information)也包含在内。

此外,WebVision 数据集也提供检验数据集和测试数据集,这些数据集中的数据都带有人手工标注的标签,从而便于算法的开发。2017 年 WebVision  挑战赛分为两类,一是在 WebVision 测试数据集上进行图像分类,以及在 PASCAL VOC 2012 数据集上进行迁移学习。在本文中,我们描述了数据收集和注释的细节,突出了 WebVision 数据集的特点,并介绍了相关评估指标。

编译来源:

超越 ILSRVC 研讨会介绍:http://image-net.org/challenges/beyond_ilsvrc

WebVision Challenge 介绍:http://www.vision.ee.ethz.ch/webvision/about.html

WebVision Challenge 论文:https://arxiv.org/pdf/1705.05640.pdf


欢迎加入本站公开兴趣群

商业智能与数据分析群

兴趣范围包括各种让数据产生价值的办法,实际应用案例分享与讨论,分析工具,ETL工具,数据仓库,数据挖掘工具,报表系统等全方位知识

QQ群:81035754

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/4583.html

相关文章

  • 最后一届ImageNet挑战赛落幕,「末代」皇冠多被国人包揽

    摘要:在本次竞赛中,南京信息工程大学和帝国理工学院的团队获得了目标检测的最优成绩,最优检测目标数量为平均较精确率为。最后在视频目标检测任务中,帝国理工大学和悉尼大学所组成的团队取得了较佳表现。 在本次 ImageNet 竞赛中,南京信息工程大学和帝国理工学院的团队 BDAT 获得了目标检测的最优成绩,最优检测目标数量为 85、平均较精确率为 0.732227。而在目标定位任务中Momenta和牛津...

    jimhs 评论0 收藏0
  • 何恺明终结ImageNet预训练时代:从0训练模型效果比肩COCO冠军

    摘要:为了探索多种训练方案,何恺明等人尝试了在不同的迭代周期降低学习率。实验中,何恺明等人还用预训练了同样的模型,再进行微调,成绩没有任何提升。何恺明在论文中用来形容这个结果。 何恺明,RBG,Piotr Dollár。三位从Mask R-CNN就开始合作的大神搭档,刚刚再次联手,一文终结了ImageNet预训练时代。他们所针对的是当前计算机视觉研究中的一种常规操作:管它什么任务,拿来ImageN...

    freecode 评论0 收藏0
  • AI Challenger开赛,千万量级数据开放,AI高手将上演巅峰对决

    摘要:月日,各项竞赛的排名将决定最终的成绩排名。选手通过训练模型,对虚拟股票走势进行预测。冠军将获得万元人民币的奖励。 showImg(https://segmentfault.com/img/bVUzA7?w=477&h=317); 2017年9月4日,AI challenger全球AI挑战赛正式开赛,来自世界各地的AI高手,将展开为期三个多月的比拼,获胜团队将分享总额超过200万人民币的...

    Ali_ 评论0 收藏0
  • 将CNN与RNN组合使用

    摘要:但是,有一些研究人员在同一个深度神经网络中巧妙地实现了二者能力的结合。一次读取并解释输入文本中的一个字或字符图像,因此深度神经网络必须等待直到当前字的处理完成,才能去处理下一个字。 从有一些有趣的用例看,我们似乎完全可以将 CNN 和 RNN/LSTM 结合使用。许多研究者目前正致力于此项研究。但是,CNN 的研究进展趋势可能会令这一想法不合时宜。一些事情正如水与油一样,看上去无法结合在一起...

    FuisonDesign 评论0 收藏0
  • 天马行空脚踏实地,阿里巴巴有群百里挑一天才应届生

    摘要:阿里巴巴有一群天马行空脚踏实地的阿里星。天马行空脚踏实地奋斗在阿里巴巴生态圈里,阿里星们高考状元清华博士论文达人的光环早已褪去,但是不断学习,不断接受挑战,仍然是这些学霸的本色。 showImg(https://segmentfault.com/img/remote/1460000018728353); 阿里巴巴有一群天马行空脚踏实地的阿里星。 阿里巴巴的春季校招已经启动。在阿里的技术...

    sshe 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<