摘要:生成对抗网络的各种变体非常多,的发明者在上推荐了这份名为的各种变体列表,这也表明现在确实非常火,被应用于各种各样的任务。了解这些各种各样的,或许能对你创造自己的有所启发。这篇文章列举了目前出现的各种变体,并将长期更新。
生成对抗网络(GAN)的各种变体非常多,GAN 的发明者 Ian Goodfellow 在Twitter上推荐了这份名为“The GAN Zoo”的各种GAN变体列表,这也表明现在GAN确实非常火,被应用于各种各样的任务。了解这些各种各样的GAN,或许能对你创造自己的 X-GAN有所启发。
几乎每周都有新的关于生成对抗网络(GAN)的论文出现,而且你很难跟踪到它们,因为研究者为这些 GAN 命名的方式非常具有创造性。了解有关 GAN 的更多信息,可以参考 OpenAI 博客的一份非常全面的 GAN 综述文章(地址:https://blog.openai.com/generative-models/),或阅读王飞跃等人的 GAN 综述文章。
这篇文章列举了目前出现的各种GAN变体,并将长期更新。这是一个开源的项目,你也可以通过 pull request 添加作者没有注意到的 GAN,
GitHub 地址:https://github.com/hindupuravinash/the-gan-zoo
这份列表的形式是:名称——论文标题(论文均发表在Arxiv,也可在深度学习世界公众号回复【变体论文】下载)。
GAN — Generative Adversarial Networks
3D-GAN — Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
AdaGAN — AdaGAN: Boosting Generative Models
AffGAN — Amortised MAP Inference for Image Super-resolution
ALI — Adversarially Learned Inference
AMGAN — Generative Adversarial Nets with Labeled Data by Activation Maximization
AnoGAN — Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
ArtGAN — ArtGAN: Artwork Synthesis with Conditional Categorial GANs
b-GAN — b-GAN: Unified Framework of Generative Adversarial Networks
Bayesian GAN — Deep and Hierarchical Implicit Models
BEGAN — BEGAN: Boundary Equilibrium Generative Adversarial Networks
BiGAN — Adversarial Feature Learning
BS-GAN — Boundary-Seeking Generative Adversarial Networks
CGAN — Towards Diverse and Natural Image Descriptions via a Conditional GAN
CCGAN — Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
CatGAN — Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
CoGAN — Coupled Generative Adversarial Networks
Context-RNN-GAN — Contextual RNN-GANs for Abstract Reasoning Diagram Generation
C-RNN-GAN — C-RNN-GAN: Continuous recurrent neural networks with adversarial training
CVAE-GAN — CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
CycleGAN — Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
DTN — Unsupervised Cross-Domain Image Generation
DCGAN — Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
DiscoGAN — Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
DualGAN — DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
EBGAN — Energy-based Generative Adversarial Network
f-GAN — f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
GoGAN — Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
GP-GAN — GP-GAN: Towards Realistic High-Resolution Image Blending
IAN — Neural Photo Editing with Introspective Adversarial Networks
iGAN — Generative Visual Manipulation on the Natural Image Manifold
IcGAN — Invertible Conditional GANs for image editing
ID-CGAN — Image De-raining Using a Conditional Generative Adversarial Network
Improved GAN — Improved Techniques for Training GANs
InfoGAN — InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
LR-GAN — LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation
LSGAN — Least Squares Generative Adversarial Networks
LS-GAN — Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities
MGAN — Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks
MAGAN — MAGAN: Margin Adaptation for Generative Adversarial Networks
MalGAN — Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN
MARTA-GAN — Deep Unsupervised Representation Learning for Remote Sensing Images
McGAN — McGan: Mean and Covariance Feature Matching GAN
MedGAN — Generating Multi-label Discrete Electronic Health Records using Generative Adversarial Networks
MIX+GAN — Generalization and Equilibrium in Generative Adversarial Nets (GANs)
MPM-GAN — Message Passing Multi-Agent GANs
MV-BiGAN — Multi-view Generative Adversarial Networks
pix2pix — Image-to-Image Translation with Conditional Adversarial Networks
PPGN — Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space
PrGAN — 3D Shape Induction from 2D Views of Multiple Objects
RenderGAN — RenderGAN: Generating Realistic Labeled Data
RTT-GAN — Recurrent Topic-Transition GAN for Visual Paragraph Generation
SGAN — Stacked Generative Adversarial Networks
SGAN — Texture Synthesis with Spatial Generative Adversarial Networks
SAD-GAN — SAD-GAN: Synthetic Autonomous Driving using Generative Adversarial Networks
SalGAN — SalGAN: Visual Saliency Prediction with Generative Adversarial Networks
SEGAN — SEGAN: Speech Enhancement Generative Adversarial Network
SeqGAN — SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient
SketchGAN — Adversarial Training For Sketch Retrieval
SL-GAN — Semi-Latent GAN: Learning to generate and modify facial images from attributes
SRGAN — Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
S2GAN — Generative Image Modeling using Style and Structure Adversarial Networks
SSL-GAN — Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
StackGAN — StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks
TGAN — Temporal Generative Adversarial Nets
TAC-GAN — TAC-GAN — Text Conditioned Auxiliary Classifier Generative Adversarial Network
TP-GAN — Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis
Triple-GAN — Triple Generative Adversarial Nets
VGAN — Generative Adversarial Networks as Variational Training of Energy Based Models
VAE-GAN — Autoencoding beyond pixels using a learned similarity metric
ViGAN — Image Generation and Editing with Variational Info Generative AdversarialNetworks
WGAN — Wasserstein GAN
WGAN-GP — Improved Training of Wasserstein GANs
WaterGAN — WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images
原文地址:https://deephunt.in/the-gan-zoo-79597dc8c347
欢迎加入本站公开兴趣群商业智能与数据分析群
兴趣范围包括各种让数据产生价值的办法,实际应用案例分享与讨论,分析工具,ETL工具,数据仓库,数据挖掘工具,报表系统等全方位知识
QQ群:81035754
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/4518.html
摘要:二是精度查全率和得分,用来衡量判别式模型的质量。精度查全率和团队还用他们的三角形数据集,测试了样本量为时,大范围搜索超参数来进行计算的精度和查全率。 从2014年诞生至今,生成对抗网络(GAN)热度只增不减,各种各样的变体层出不穷。有位名叫Avinash Hindupur的国际友人建立了一个GAN Zoo,他的动物园里目前已经收集了多达214种有名有姓的GAN。DeepMind研究员们甚至将...
摘要:也是相关的,因为它们已经成为实现和使用的主要基准之一。在本文发表之后不久,和中有容易获得的不同实现用于测试你所能想到的任何数据集。在这篇文章中,作者提出了对训练的不同增强方案。在这种情况下,鉴别器仅用于指出哪些是值得匹配的统计信息。 本文不涉及的内容首先,你不会在本文中发现:复杂的技术说明代码(尽管有为那些感兴趣的人留的代码链接)详尽的研究清单(点击这里进行查看 链接:http://suo....
摘要:近日,英国小哥在上图解了一系列生成式对抗网和变分自编码器的实现。 近日,英国小哥Pawel.io在GitHub上图解了一系列生成式对抗网(GAN)和变分自编码器(VAE)的TensorFlow实现。生成式对抗网络(GAN)GAN论文地址:https://arxiv.org/abs/1406.2661价值函数:结构图:LSGAN论文地址:https://arxiv.org/abs/1611.0...
摘要:近日,谷歌大脑发布了一篇全面梳理的论文,该研究从损失函数对抗架构正则化归一化和度量方法等几大方向整理生成对抗网络的特性与变体。他们首先定义了全景图损失函数归一化和正则化方案,以及最常用架构的集合。 近日,谷歌大脑发布了一篇全面梳理 GAN 的论文,该研究从损失函数、对抗架构、正则化、归一化和度量方法等几大方向整理生成对抗网络的特性与变体。作者们复现了当前较佳的模型并公平地对比与探索 GAN ...
摘要:作者在论文中将这种新的谱归一化方法与其他归一化技术,比如权重归一化,权重削减等,和梯度惩罚等,做了比较,并通过实验表明,在没有批量归一化权重衰减和判别器特征匹配的情况下,谱归一化改善生成的图像质量,效果比权重归一化和梯度惩罚更好。 就在几小时前,生成对抗网络(GAN)的发明人Ian Goodfellow在Twitter上发文,激动地推荐了一篇论文:Goodfellow表示,虽然GAN十分擅长...
阅读 1184·2021-11-17 09:33
阅读 3578·2021-09-28 09:42
阅读 3240·2021-09-13 10:35
阅读 2393·2021-09-06 15:00
阅读 2396·2021-08-27 13:12
阅读 3591·2021-07-26 23:38
阅读 1759·2019-08-30 15:55
阅读 523·2019-08-30 15:53