摘要:默认值为,指定为时代表可以阻塞,若同时指定,在超时时返回。当消费者线程调用意味着有消费者取得任务并完成任务,未完成的任务数就会减少。当未完成的任务数降到,解除阻塞。
学习契机
最近的一个项目中在使用grpc时遇到一个问题,由于client端可多达200,每个端口每10s向grpc server发送一次请求,server端接受client的请求后根据request信息更新数据库,再将数据库和配置文件的某些数据封装后返回给client。原代码的性能是0.26s/request,远远达不到所需性能,其中数据库更新操作耗时达到80%,其中一个优化点就是将数据库更新操作放在独立的线程中。
在次之前没有使用过线程编码,学以致用后本着加深理解的想法,将这个过程记录下来,这里先记下用于线程间通信的队列Queue的相关知识。
Python2中队列库名称为Queue,Python3中已改名为queue,项目使用Python2.7.5版本,自然是使用Queue。
Queue模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列PriorityQueue。这些队列都实现了锁原语,可在多线程通信中直接使用。
Queue模块定义了以下类及异常,在队列类中,maxsize限制可入队列数据的数量,值小于等于0时代表不限制:
Queue.Queue(maxsize=0) FIFO队列
Queue.LifoQueue(maxsize=0) LIFO队列
Queue.PriorityQueue(maxsize=0) 优先级队列
Queue.Empty TODO
Queue.Full
Queue(Queue、LifoQueue、PriorityQueue)对象提供以下方法:
Queue.qsize()
返回队列大小,但是不保证qsize() > 0时,get()不会阻塞;也不保证qsize() < maxsize时,put()不会阻塞。
Queue.empty()
返回True时,不保证put()时不会阻塞;返回False时不保证get()不会阻塞。
Queue.full()
返回True时,不保证get()时不会阻塞;返回False时不保证put()不会阻塞。
Queue.put(item[, block[, timeout]])
block默认值为False,指定为True时代表可以阻塞,若同时指定timeout,在超时时返回Full exception。
Queue.put_nowait(item)
等同put(item, False)
Queue.get([block[, timeout]])
Queue.get_nowait()
等同get(item, False)
Queue.task_done()
消费者线程调用。调用get()后,可调用task_done()告诉队列该任务已经处理完毕。
如果当前一个join()正在阻塞,它将在队列中的所有任务都处理完时恢复执行(即每一个由put()调用入队的任务都有一个对应的task_done()调用)。
Queue.join()
阻塞调用线程,直到队列中的所有任务被处理掉。
只要有数据被加入队列,未完成的任务数就会增加。当消费者线程调用task_done()(意味着有消费者取得任务并完成任务),未完成的任务数就会减少。当未完成的任务数降到0,join()解除阻塞。
UpdateThread是单一消费者进程,获取FIFO队列中的数据处理,GrpcThread是multi生产者线程,需要对往队列中丢数据这个操作加锁保证数据先后顺序。
import threading import Queue import time q = Queue.Queue() q_lock = threading.Lock() class UpdateThread(threading.Thread): def __init__(self): super(self.__class__, self).__init__() self.setName(self.__class__.__name__) self._setName = self.setName @staticmethod def update_stat(): global q while not q.empty(): stat = q.get() print "Update stat (%s) in db" % stat def run(self): while True: self.update_stat() time.sleep(0.1) class GrpcThread(threading.Thread): def compose_stat(self, stat): global q q_lock.acquire() q.put("%d: %s" % (stat, self.name)) q_lock.release() return def run(self): for i in range(10): self.compose_stat(i) time.sleep(0.1) def launch_update_thread(): UpdateThread().start() if __name__ == "__main__": launch_update_thread() thread1 = GrpcThread() thread2 = GrpcThread() thread1.start() thread2.start()
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/44586.html
摘要:在生产者与消费者之间的缓冲区称之为仓库。生产者负责往仓库运输商品,而消费者负责从仓库里取出商品,这就构成了生产者消费者模式。中的多线程编程在实现生产者消费者模式之前,我们先学习下中的多线程编程。 什么是生产者消费者模式 在软件开发的过程中,经常碰到这样的场景:某些模块负责生产数据,这些数据由其他模块来负责处理(此处的模块可能是:函数、线程、进程等)。产生数据的模块称为生产者,而处理数据...
摘要:介绍今天花了近乎一天的时间研究关于多线程的问题,查看了大量源码自己也实践了一个生产消费者模型,所以把一天的收获总结一下。提供了两个模块和来支持的多线程操作。使用来阻塞线程。 介绍 今天花了近乎一天的时间研究python关于多线程的问题,查看了大量源码 自己也实践了一个生产消费者模型,所以把一天的收获总结一下。 由于GIL(Global Interpreter Lock)锁的关系,纯的p...
摘要:分布式进程在和中,应当优选,因为更稳定,而且,可以分布到多台机器上,而最多只能分布到同一台机器的多个上。由于模块封装很好,不必了解网络通信的细节,就可以很容易地编写分布式多进程程序。 分布式进程 在Thread和Process中,应当优选Process,因为Process更稳定,而且,Process可以分布到多台机器上,而Thread最多只能分布到同一台机器的多个CPU上。 Pytho...
摘要:批评的人通常都会说的多线程编程太困难了,众所周知的全局解释器锁,或称使得多个线程的代码无法同时运行。多线程起步首先让我们来创建一个名为的模块。多进程可能比多线程更易使用,但需要消耗更大的内存。 批评 Python 的人通常都会说 Python 的多线程编程太困难了,众所周知的全局解释器锁(Global Interpreter Lock,或称 GIL)使得多个线程的 Python 代码无...
阅读 3837·2021-09-27 13:56
阅读 883·2021-09-08 09:36
阅读 767·2019-08-30 15:54
阅读 611·2019-08-29 17:29
阅读 929·2019-08-29 17:21
阅读 1686·2019-08-29 16:59
阅读 2760·2019-08-29 13:03
阅读 2967·2019-08-29 12:47