摘要:系数反映每个特征的影响力。越大表示该特征在分类中起到的作用越大
import numpy as np import scipy as sp import pandas as pd import matplotlib.pyplot as pltSplit train and test
from sklearn.cross_validation import train_test_split x_train, x_test, y_train, y_test = train_test_split(customer.ix[:,0:customer.columns.size-1], customer.ix[:,customer.columns.size-1], test_size = 0.2) x_train, x_test, y_train, y_test = train_test_split(order.ix[:,0:order.columns.size-1], order.ix[:,order.columns.size-1], test_size = 0.2)Pearson Correlation for Order
from scipy.stats import pearsonr prr = [] for i in range(order.columns.size-1): frame = pearsonr(order.iloc[:,i], order.iloc[:,order.columns.size-1]) prr.append(frame) result = pd.concat([pd.DataFrame(order.columns.values.tolist()), pd.DataFrame(prr)], axis=1) result.columns = ["Features", "Pearson", "Pvalue"] result result.to_csv("result.csv", index = True, header = True)Pearson Correlation for Customer
from scipy.stats import pearsonr prr = [] for i in range(customer.columns.size-1): frame = pearsonr(customer.iloc[:,i], customer.iloc[:,customer.columns.size-1]) prr.append(frame) result = pd.concat([pd.DataFrame(customer.columns.values.tolist()), pd.DataFrame(prr)], axis=1) result.columns = ["Features", "Pearson", "Pvalue"] result result.to_csv("result.csv", index = True, header = True)Random forest
from sklearn.ensemble import RandomForestRegressor clf = RandomForestRegressor() clf.fit(x_train, y_train) from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(n_jobs=100) clf.fit(x_train, y_train)MIC
from minepy import MINE mic = [] for i in range(customer.columns.size-1): frame = m.compute_score(customer.iloc[:,i], customer.iloc[:,34]) prr.append(frame) result = pd.concat([pd.DataFrame(customer.columns.values.tolist()), pd.DataFrame(prr)], axis=1) result.columns = ["Features", "Pearson", "Pvalue"] result.to_csv("result.csv", index = True, header = True)Feature Correlation
corr = customer.corr() corr.to_csv("result.csv", index = True, header = True) tar_corr = lambda x: x.corr(x["tar"]) cus_call.apply(tar_corr) cus_call.corrwith(cus_call.tar)Feature Importance
系数反映每个特征的影响力。越大表示该特征在分类中起到的作用越大
importances = pd.DataFrame(sorted(zip(x_train.columns, map(lambda x: round(x, 4), clf.feature_importances_)), reverse=True)) importances.columns = ["Features", "Importance"] importances.to_csv("result.csv", index = True, header = True)
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/44567.html
摘要:翻译自昨天收到推送了一篇介绍随机森林算法的邮件,感觉作为介绍和入门不错,就顺手把它翻译一下。随机森林引入的随机森林算法将自动创建随机决策树群。回归随机森林也可以用于回归问题。结语随机森林相当起来非常容易。 翻译自:http://blog.yhat.com/posts/python-random-forest.html 昨天收到yhat推送了一篇介绍随机森林算法的邮件,感觉作为介绍和入门...
摘要:机器学习算法类型从广义上讲,有种类型的机器学习算法。强化学习的例子马尔可夫决策过程常用机器学习算法列表以下是常用机器学习算法的列表。我提供了对各种机器学习算法的高级理解以及运行它们的代码。决策树是一种监督学习算法,主要用于分类问题。 showImg(https://segmentfault.com/img/remote/1460000019086462); 介绍 谷歌的自动驾驶汽车和机...
阅读 2498·2021-07-26 23:38
阅读 3402·2019-08-30 13:10
阅读 2267·2019-08-29 18:33
阅读 2279·2019-08-29 16:12
阅读 948·2019-08-29 10:59
阅读 1774·2019-08-26 17:40
阅读 732·2019-08-26 11:59
阅读 782·2019-08-26 11:41