摘要:对于维问题就最优解,梯度下降法是最常用的方法之一。下面通过梯度下降法的前生今世来进行详细推导说明。这是因为梯度下降法只是对当前所处的凹谷进行梯度下降求解,对于函数并不代表只有一个的凹谷。所以梯度下降法只能求得局部解,但不一定能求得全部的解。
前言
最近机器学习越来越火了,前段时间斯丹福大学副教授吴恩达都亲自录制了关于Deep Learning Specialization的教程,在国内掀起了巨大的学习热潮。本着不被时代抛弃的念头,自己也开始研究有关机器学习的知识。都说机器学习的学习难度非常大,但不亲自尝试一下又怎么会知道其中的奥妙与乐趣呢?只有不断的尝试才能找到最适合自己的道路。
请容忍我上述的自我煽情,下面进入主题。这篇文章主要对机器学习中所遇到的GradientDescent(梯度下降)进行全面分析,相信你看了这篇文章之后,对GradientDescent将彻底弄明白其中的原理。
梯度下降的概念梯度下降法是一个一阶最优化算法,通常也称为最速下降法。要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对于梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。所以梯度下降法可以帮助我们求解某个函数的极小值或者最小值。对于n维问题就最优解,梯度下降法是最常用的方法之一。下面通过梯度下降法的前生今世来进行详细推导说明。
梯度下降法的前世首先从简单的开始,看下面的一维函数:
f(x) = x^3 + 2 * x - 3
在数学中如果我们要求f(x) = 0处的解,我们可以通过如下误差等式来求得:
error = (f(x) - 0)^2
当error趋近于最小值时,也就是f(x) = 0处x的解,我们也可以通过图来观察:
通过这函数图,我们可以非常直观的发现,要想求得该函数的最小值,只要将x指定为函数图的最低谷。这在高中我们就已经掌握了该函数的最小值解法。我们可以通过对该函数进行求导(即斜率):
derivative(x) = 6 * x^5 + 16 * x^3 - 18 * x^2 + 8 * x - 12
如果要得到最小值,只需令derivative(x) = 0,即x = 1。同时我们结合图与导函数可以知道:
当x < 1时,derivative < 0,斜率为负的;
当x > 1时,derivative > 0,斜率为正的;
当x 无限接近 1时,derivative也就无限=0,斜率为零。
通过上面的结论,我们可以使用如下表达式来代替x在函数中的移动
x = x - reate * derivative
当斜率为负的时候,x增大,当斜率为正的时候,x减小;因此x总是会向着低谷移动,使得error最小,从而求得 f(x) = 0处的解。其中的rate代表x逆着导数方向移动的距离,rate越大,x每次就移动的越多。反之移动的越少。
这是针对简单的函数,我们可以非常直观的求得它的导函数。为了应对复杂的函数,我们可以通过使用求导函数的定义来表达导函数:若函数f(x)在点x0处可导,那么有如下定义:
上面是都是公式推导,下面通过代码来实现,下面的代码都是使用python进行实现。
>>> def f(x): ... return x**3 + 2 * x - 3 ... >>> def error(x): ... return (f(x) - 0)**2 ... >>> def gradient_descent(x): ... delta = 0.00000001 ... derivative = (error(x + delta) - error(x)) / delta ... rate = 0.01 ... return x - rate * derivative ... >>> x = 0.8 >>> for i in range(50): ... x = gradient_descent(x) ... print("x = {:6f}, f(x) = {:6f}".format(x, f(x))) ...
执行上面程序,我们就能得到如下结果:
x = 0.869619, f(x) = -0.603123 x = 0.921110, f(x) = -0.376268 x = 0.955316, f(x) = -0.217521 x = 0.975927, f(x) = -0.118638 x = 0.987453, f(x) = -0.062266 x = 0.993586, f(x) = -0.031946 x = 0.996756, f(x) = -0.016187 x = 0.998369, f(x) = -0.008149 x = 0.999182, f(x) = -0.004088 x = 0.999590, f(x) = -0.002048 x = 0.999795, f(x) = -0.001025 x = 0.999897, f(x) = -0.000513 x = 0.999949, f(x) = -0.000256 x = 0.999974, f(x) = -0.000128 x = 0.999987, f(x) = -0.000064 x = 0.999994, f(x) = -0.000032 x = 0.999997, f(x) = -0.000016 x = 0.999998, f(x) = -0.000008 x = 0.999999, f(x) = -0.000004 x = 1.000000, f(x) = -0.000002 x = 1.000000, f(x) = -0.000001 x = 1.000000, f(x) = -0.000001 x = 1.000000, f(x) = -0.000000 x = 1.000000, f(x) = -0.000000 x = 1.000000, f(x) = -0.000000
通过上面的结果,也验证了我们最初的结论。x = 1时,f(x) = 0。
所以通过该方法,只要步数足够多,就能得到非常精确的值。
上面是对一维函数进行求解,那么对于多维函数又要如何求呢?我们接着看下面的函数,你会发现对于多维函数也是那么的简单。
f(x) = x[0] + 2 * x[1] + 4
同样的如果我们要求f(x) = 0处,x[0]与x[1]的值,也可以通过求error函数的最小值来间接求f(x)的解。跟一维函数唯一不同的是,要分别对x[0]与x[1]进行求导。在数学上叫做偏导数:
保持x[1]不变,对x[0]进行求导,即f(x)对x[0]的偏导数
保持x[0]不变,对x[1]进行求导,即f(x)对x[1]的偏导数
有了上面的理解基础,我们定义的gradient_descent如下:
>>> def gradient_descent(x): ... delta = 0.00000001 ... derivative_x0 = (error([x[0] + delta, x[1]]) - error([x[0], x[1]])) / delta ... derivative_x1 = (error([x[0], x[1] + delta]) - error([x[0], x[1]])) / delta ... rate = 0.01 ... x[0] = x[0] - rate * derivative_x0 ... x[1] = x[1] - rate * derivative_x1 ... return [x[0], x[1]] ...
rate的作用不变,唯一的区别就是分别获取最新的x[0]与x[1]。下面是整个代码:
>>> def f(x): ... return x[0] + 2 * x[1] + 4 ... >>> def error(x): ... return (f(x) - 0)**2 ... >>> def gradient_descent(x): ... delta = 0.00000001 ... derivative_x0 = (error([x[0] + delta, x[1]]) - error([x[0], x[1]])) / delta ... derivative_x1 = (error([x[0], x[1] + delta]) - error([x[0], x[1]])) / delta ... rate = 0.02 ... x[0] = x[0] - rate * derivative_x0 ... x[1] = x[1] - rate * derivative_x1 ... return [x[0], x[1]] ... >>> x = [-0.5, -1.0] >>> for i in range(100): ... x = gradient_descent(x) ... print("x = {:6f},{:6f}, f(x) = {:6f}".format(x[0],x[1],f(x))) ...
输出结果为:
x = -0.560000,-1.120000, f(x) = 1.200000 x = -0.608000,-1.216000, f(x) = 0.960000 x = -0.646400,-1.292800, f(x) = 0.768000 x = -0.677120,-1.354240, f(x) = 0.614400 x = -0.701696,-1.403392, f(x) = 0.491520 x = -0.721357,-1.442714, f(x) = 0.393216 x = -0.737085,-1.474171, f(x) = 0.314573 x = -0.749668,-1.499337, f(x) = 0.251658 x = -0.759735,-1.519469, f(x) = 0.201327 x = -0.767788,-1.535575, f(x) = 0.161061 x = -0.774230,-1.548460, f(x) = 0.128849 x = -0.779384,-1.558768, f(x) = 0.103079 x = -0.783507,-1.567015, f(x) = 0.082463 x = -0.786806,-1.573612, f(x) = 0.065971 x = -0.789445,-1.578889, f(x) = 0.052777 x = -0.791556,-1.583112, f(x) = 0.042221 x = -0.793245,-1.586489, f(x) = 0.033777 x = -0.794596,-1.589191, f(x) = 0.027022 x = -0.795677,-1.591353, f(x) = 0.021617 x = -0.796541,-1.593082, f(x) = 0.017294 x = -0.797233,-1.594466, f(x) = 0.013835 x = -0.797786,-1.595573, f(x) = 0.011068 x = -0.798229,-1.596458, f(x) = 0.008854 x = -0.798583,-1.597167, f(x) = 0.007084 x = -0.798867,-1.597733, f(x) = 0.005667 x = -0.799093,-1.598187, f(x) = 0.004533 x = -0.799275,-1.598549, f(x) = 0.003627 x = -0.799420,-1.598839, f(x) = 0.002901 x = -0.799536,-1.599072, f(x) = 0.002321 x = -0.799629,-1.599257, f(x) = 0.001857 x = -0.799703,-1.599406, f(x) = 0.001486 x = -0.799762,-1.599525, f(x) = 0.001188 x = -0.799810,-1.599620, f(x) = 0.000951 x = -0.799848,-1.599696, f(x) = 0.000761 x = -0.799878,-1.599757, f(x) = 0.000608 x = -0.799903,-1.599805, f(x) = 0.000487 x = -0.799922,-1.599844, f(x) = 0.000389 x = -0.799938,-1.599875, f(x) = 0.000312 x = -0.799950,-1.599900, f(x) = 0.000249 x = -0.799960,-1.599920, f(x) = 0.000199 x = -0.799968,-1.599936, f(x) = 0.000159 x = -0.799974,-1.599949, f(x) = 0.000128 x = -0.799980,-1.599959, f(x) = 0.000102 x = -0.799984,-1.599967, f(x) = 0.000082 x = -0.799987,-1.599974, f(x) = 0.000065 x = -0.799990,-1.599979, f(x) = 0.000052 x = -0.799992,-1.599983, f(x) = 0.000042 x = -0.799993,-1.599987, f(x) = 0.000033 x = -0.799995,-1.599989, f(x) = 0.000027 x = -0.799996,-1.599991, f(x) = 0.000021 x = -0.799997,-1.599993, f(x) = 0.000017 x = -0.799997,-1.599995, f(x) = 0.000014 x = -0.799998,-1.599996, f(x) = 0.000011 x = -0.799998,-1.599997, f(x) = 0.000009 x = -0.799999,-1.599997, f(x) = 0.000007 x = -0.799999,-1.599998, f(x) = 0.000006 x = -0.799999,-1.599998, f(x) = 0.000004 x = -0.799999,-1.599999, f(x) = 0.000004 x = -0.799999,-1.599999, f(x) = 0.000003 x = -0.800000,-1.599999, f(x) = 0.000002 x = -0.800000,-1.599999, f(x) = 0.000002 x = -0.800000,-1.599999, f(x) = 0.000001 x = -0.800000,-1.600000, f(x) = 0.000001 x = -0.800000,-1.600000, f(x) = 0.000001 x = -0.800000,-1.600000, f(x) = 0.000001 x = -0.800000,-1.600000, f(x) = 0.000001 x = -0.800000,-1.600000, f(x) = 0.000000
细心的你可能会发现,f(x) = 0不止这一个解还可以是x = -2, -1。这是因为梯度下降法只是对当前所处的凹谷进行梯度下降求解,对于error函数并不代表只有一个f(x) = 0的凹谷。所以梯度下降法只能求得局部解,但不一定能求得全部的解。当然如果对于非常复杂的函数,能够求得局部解也是非常不错的。tensorflow中的运用
通过上面的示例,相信对梯度下降也有了一个基本的认识。现在我们回到最开始的地方,在tensorflow中使用gradientDescent。
import tensorflow as tf # Model parameters W = tf.Variable([.3], dtype=tf.float32) b = tf.Variable([-.3], dtype=tf.float32) # Model input and output x = tf.placeholder(tf.float32) linear_model = W*x + b y = tf.placeholder(tf.float32) # loss loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares # optimizer optimizer = tf.train.GradientDescentOptimizer(0.01) train = optimizer.minimize(loss) # training data x_train = [1, 2, 3, 4] y_train = [0, -1, -2, -3] # training loop init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) # reset values to wrong for i in range(1000): sess.run(train, {x: x_train, y: y_train}) # evaluate training accuracy curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x: x_train, y: y_train}) print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))
上面的是tensorflow的官网示例,上面代码定义了函数linear_model = W * x + b,其中的error函数为linear_model - y。目的是对一组x_train与y_train进行简单的训练求解W与b。为了求得这一组数据的最优解,将每一组的error相加从而得到loss,最后再对loss进行梯度下降求解最优值。
optimizer = tf.train.GradientDescentOptimizer(0.01) train = optimizer.minimize(loss)
在这里rate为0.01,因为这个示例也是多维函数,所以也要用到偏导数来进行逐步向最优解靠近。
for i in range(1000): sess.run(train, {x: x_train, y: y_train})
最后使用梯度下降进行循环推导,下面给出一些推导过程中的相关结果
W: [-0.21999997] b: [-0.456] loss: 4.01814 W: [-0.39679998] b: [-0.49552] loss: 1.81987 W: [-0.45961601] b: [-0.4965184] loss: 1.54482 W: [-0.48454273] b: [-0.48487374] loss: 1.48251 W: [-0.49684232] b: [-0.46917531] loss: 1.4444 W: [-0.50490189] b: [-0.45227283] loss: 1.4097 W: [-0.5115062] b: [-0.43511063] loss: 1.3761 .... .... .... W: [-0.99999678] b: [ 0.99999058] loss: 5.84635e-11 W: [-0.99999684] b: [ 0.9999907] loss: 5.77707e-11 W: [-0.9999969] b: [ 0.99999082] loss: 5.69997e-11
这里就不推理验证了,如果看了上面的梯度下降的前世今生,相信能够自主的推导出来。那么我们直接看最后的结果,可以估算为W = -1.0与b = 1.0,将他们带入上面的loss得到的结果为0.0,即误差损失值最小,所以W = -1.0与b = 1.0就是x_train与y_train这组数据的最优解。
好了,关于梯度下降的内容就到这了,希望能够帮助到你;如有不足之处欢迎来讨论,如果感觉这篇文章不错的话,可以关注我的博客,或者扫描下方二维码关注:怪谈时间到了 公众号,查看我的其它文章。
博客地址
关注文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/44474.html
摘要:对于维问题就最优解,梯度下降法是最常用的方法之一。下面通过梯度下降法的前生今世来进行详细推导说明。这是因为梯度下降法只是对当前所处的凹谷进行梯度下降求解,对于函数并不代表只有一个的凹谷。所以梯度下降法只能求得局部解,但不一定能求得全部的解。 前言 最近机器学习越来越火了,前段时间斯丹福大学副教授吴恩达都亲自录制了关于Deep Learning Specialization的教程,在国内...
摘要:在中是主流布局方式。它有三种状态正数零与负数。来看下运行效果。这是为正数的情况,如果,控件的大小就会根据设置的与来固定显示。如果发现生效的方式请务必告知。在中有主轴与副轴之分,主轴控制的排列方向,默认为。默认值为,继承父容器的属性。 今天我们来聊聊Flexbox,它是前端的一个布局方式。在React Native中是主流布局方式。如果你刚刚入门React Native,或者没有多少前端...
摘要:在中是主流布局方式。它有三种状态正数零与负数。来看下运行效果。这是为正数的情况,如果,控件的大小就会根据设置的与来固定显示。如果发现生效的方式请务必告知。在中有主轴与副轴之分,主轴控制的排列方向,默认为。默认值为,继承父容器的属性。 今天我们来聊聊Flexbox,它是前端的一个布局方式。在React Native中是主流布局方式。如果你刚刚入门React Native,或者没有多少前端...
阅读 1954·2021-09-07 09:59
阅读 2522·2019-08-29 16:33
阅读 3693·2019-08-29 16:18
阅读 2852·2019-08-29 15:30
阅读 1681·2019-08-29 13:52
阅读 2040·2019-08-26 18:36
阅读 535·2019-08-26 12:19
阅读 695·2019-08-23 15:23