资讯专栏INFORMATION COLUMN

为什么强大的 MXNet 一直火不起来?

hufeng / 2886人阅读

摘要:既然这么好,为什么就一直没火起来呢我看周围基本上没人用,比较好的论文开源出的代码也没见到。这次不遗余力的宣传,连带推动了整个的火热。现状是散修小团体一起合力做出来的平台。这个是较大的特色。根据作者的平台排名,目前属于第四,前三分别是,,。

看了下mxnet,觉得很厉害的,支持各个流行的平台,支持多种语言,支持多机多GPU并行。相比起来,caffe就没这么好的支持的。既然这么好,为什么mxnet就一直没火起来呢?我看周围基本上没人用,比较好的论文开源出的代码也没见到mxnet。有什么深层次的原因吗?

简单来说就是我们没有足够的人手能够在短时间内同时技术上做出足够的深度而且大规模推广,所以我们前期是舍推广保技术。

详细来说我稍微发散下,可以把当下的深度学习(DL)比作修真世界(传统武侠也类似)。学术界是各个门派,公司是世家,不过这个世界里世家比较强势。目前是盛世,各个流派之争,新人和技术层出不穷,各大擂台(例如imagenet)和大会(据说今年nips 8k人参加,一个月前就把票卖光了)热火朝天。平台作为修真练级法宝,自然也是各家PK重要之地。

各个平台是怎么“火”起来的

简单的来吧DL分三个阶段来看,前DL时代就是Alexnet没有刷出imagenet第一的时候,当时候主流算是torch和theano,从上一个神经网络的时代的两大修正大门流传下来,还是有坚实的用户基础。之后魔界(kernel)入侵,神经网络衰败。但10年后Alexnet横空出世,借着大数据和GPU的重剑无锋,横扫三界。同时也促使了很多新的平台的出现,caffe是之一,很多公司也有做自己的,例如百度的paddle,G的distbelief,我们也有做一个类似的项目叫cxxnet。大体上这些平台使用体验差不多,给一个configure就能跑。这里面caffe是最成功,我觉得重要两点是时间点很好,就是dl在cv爆发的那段时间,然后caffe有在imagenet pretrain的模型,这个很方便大家的研究。毕竟大部分工作要么是改改operator重新跑一下,要么是基于pretrained的模型来finetune一个别的任务。

之后出来的比较成功的平台主要是靠提供更加灵活的开发环境来吸引新人。例如tensorflow和keras。

tf作为当下修真界较大门的平台,成功没有什么意外(1)G brain在这个领域上耕耘了5,6年,做为第二代产品在质量确实很优秀。(2)在jeff dean的号召下brain网罗了一大帮人,跟他们团队接触过很多次,整体人员质量甩出其他家很远,以至于经常是好几个我觉得能独当一面的大牛一起在做一些很小的事情。例如我在cmu系统方向的老板dave在brain好长一段时间就是debug为什么inception v3从distbelief移植到tf老是跑不出想要的精度。(另,类似的坑我们也踩过,我还笑过dave你如果问我们一下可以省下你大笔时间,dave回我们人多任性不求人。)(3)G的宣传机器如果称第二,那业界估计没人敢说第一。这次G不遗余力的宣传tf,连带推动了整个DL的火热。

keras比较有意思,基本是François Chollet一人之力做的,有点是散修自己折腾出来的(他人现在在G,不过他去G之前就开始keras了)。它的优势就是简单,底层靠theano或者tensorflow,上层提供一个非常简单的接口,非常适合新用户使用。修真界新人练气的不二法宝。

MXNet现状

mxnetet是散修小团体一起合力做出来的平台。如果去看排名前20的开发者,基本都是出自不同的门派和世家。这个是mxnet较大的特色。我对此表示很自豪,这里汇聚了一大帮跑得出实验写得出代码的小伙伴。

不论是开始时间还是平台特性,mxnet最靠近tensorflow。有完整的多语言前端,后端类似编译器,做这种内存和执行优化。应用场景从分布式训练到移动端部署都覆盖。整个系统全部模块化,有极小的编译依赖,非常适合快速开发。相对于tf这种重量型的后端,mxnet的轻量化路线使得可以我们在花费G brain 1/10的人力的情况下做到类似tf技术深度的系统。

从推广的角度来说,需要的是清晰的文档,大量的样例,媒体曝光,和客服。这个对于散修团体而说前期比较困难。不过最近也慢慢赶上了。

根据keras作者的平台排名,目前mxnet属于第四,前三分别是tf,caffe,keras。因为dl也是刚兴起不久,目前的用户可能一大半是刚入门不久,选择tf/keras很符合情理。对于学术界而言,通常性能不是很关键,最重要是开发成本,如果前面的工作用了caffe/torch,那基本会一直用下去。

我们也回访过我们用户,很多都是工业界用户,基本都是属于有很强的技术能力,他们关心性能,开发和移植的便利性,和是不是能在开发社区里获得一定的话语权。事实上,mxnet离人也很近,例如

- 某占有率很高手机利用mx处理图片

- 好几个常见的app云端利用mx处理数据

- aws/azure都写了好几篇blog普及在云上面运行mxnet

- 国内几个技术能力很强的ai创业公司内部用mx

整体而言,不管是dl技术,应用,还是平台,目前说什么都尚早。技术和潮流都是日新月异,修仙之路也刚开始。我觉得最核心的是,有一群有最求的人,一起合力做一件事情,不断往前。

PS. 我在考虑要不要写一个关于DL/ML的修仙系列。例如“魔界小王子,誉为最有希望带领魔界重杀回来领袖的叛逃心路历程”,“我跟修真界第一门掌门的故事”,“如何利用入门道具组装小型阵法加速修炼”,“解析为什么大门长老屡屡逃奔世家”。。。

欢迎加入本站公开兴趣群

商业智能与数据分析群

兴趣范围包括各种让数据产生价值的办法,实际应用案例分享与讨论,分析工具,ETL工具,数据仓库,数据挖掘工具,报表系统等全方位知识

QQ群:81035754

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/4429.html

相关文章

  • 亚马逊推出三大机器学习云服务,AI成为云计算之战天王山

    摘要:被称为亚马逊的新服务提供了强大的功能,如图像分析,文本到语音转换和自然语言处理。换句话说,其任务是将谷歌的机器学习功能产品化。亚马逊平台推出的这些新服务中的第一个是名为的图像识别服务。 亚马逊一直在其零售业务中使用深度学习和人工智能来提高客户体验。该公司声称,它有数千名工程师专门从事人工智能相关开发,以改善搜索、物流、产品推荐和库存管理。亚马逊现在正在将相同的专业知识带给云,展示了开发人员可...

    huhud 评论0 收藏0
  • 深度学习

    摘要:深度学习在过去的几年里取得了许多惊人的成果,均与息息相关。机器学习进阶笔记之一安装与入门是基于进行研发的第二代人工智能学习系统,被广泛用于语音识别或图像识别等多项机器深度学习领域。零基础入门深度学习长短时记忆网络。 多图|入门必看:万字长文带你轻松了解LSTM全貌 作者 | Edwin Chen编译 | AI100第一次接触长短期记忆神经网络(LSTM)时,我惊呆了。原来,LSTM是神...

    Vultr 评论0 收藏0
  • 国内主机是什么-国内主机游戏市场冷淡原因是什么

    摘要:中国有自己研发的游戏主机吗是什么样的水准这个问题蛮有意思的,中国是有自己研发的游戏机的,早期是以仿制任天堂的为主。以上只是一个国内主机游戏市场冷淡一个小插曲而已,真正的还是国产网游在中国游戏史上的根深蒂固。中国有自己研发的游戏主机吗?是什么样的水准?这个问题蛮有意思的,中国是有自己研发的游戏机的,早期是以仿制任天堂的FC为主。小霸王这个名字相信大部分80后都不陌生。下面具体分析一下。早期的小...

    wenyiweb 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<