摘要:性能分析和调优工具简介总会遇到一个时候你会想提高程序执行效率,想看看哪部分耗时长成为瓶颈,想知道程序运行时内存和使用情况。安装会分析的更快。
性能分析和调优工具简介
总会遇到一个时候你会想提高程序执行效率,想看看哪部分耗时长成为瓶颈,想知道程序运行时内存和CPU使用情况。这时候你会需要一些方法对程序进行性能分析和调优。
By Context Manager可以上下文管理器自己实现一个计时器, 参见之前的介绍 timeit 文章里做的那样,通过定义类的 __enter__ 和 __exit__ 方法来实现对管理的函数计时, 类似如:
# timer.py import time class Timer(object): def __init__(self, verbose=False): self.verbose = verbose def __enter__(self): self.start = time.time() return self def __exit__(self, *args): self.end = time.time() self.secs = self.end - self.start self.msecs = self.secs * 1000 # 毫秒 if self.verbose: print "elapsed time: %f ms" % self.msecs
使用方式如下:
from timer import Timer with Timer() as t: foo() print "=> foo() spends %s s" % t.secsBy Decorator
然而我认为装饰器的方式更加优雅
import time from functools import wraps def timer(function): @wraps(function) def function_timer(*args, **kwargs): t0 = time.time() result = function(*args, **kwargs) t1 = time.time() print ("Total time running %s: %s seconds" % (function.func_name, str(t1-t0)) ) return result return function_timer
使用就很简单了:
@timer def my_sum(n): return sum([i for i in range(n)]) if __name__ == "__main__": my_sum(10000000)
运行结果:
➜ python profile.py Total time running my_sum: 0.817697048187 seconds系统自带的time命令
使用示例如下:
➜ time python profile.py Total time running my_sum: 0.854454040527 seconds python profile.py 0.79s user 0.18s system 98% cpu 0.977 total
上面的结果说明: 执行脚本消耗0.79sCPU时间, 0.18秒执行内核函数消耗的时间,总共0.977s时间。
其中, total时间 - (user时间 + system时间) = 消耗在输入输出和系统执行其它任务消耗的时间
可以用来做benchmark, 可以方便的重复一个程序执行的次数,来查看程序可以运行多块。具体参考之前写的文章。
cProfile直接看带注释的使用示例吧。
#coding=utf8 def sum_num(max_num): total = 0 for i in range(max_num): total += i return total def test(): total = 0 for i in range(40000): total += i t1 = sum_num(100000) t2 = sum_num(200000) t3 = sum_num(300000) t4 = sum_num(400000) t5 = sum_num(500000) test2() return total def test2(): total = 0 for i in range(40000): total += i t6 = sum_num(600000) t7 = sum_num(700000) return total if __name__ == "__main__": import cProfile # # 直接把分析结果打印到控制台 # cProfile.run("test()") # # 把分析结果保存到文件中 # cProfile.run("test()", filename="result.out") # 增加排序方式 cProfile.run("test()", filename="result.out", sort="cumulative")
cProfile将分析的结果保存到result.out文件中,但是以二进制形式存储的,想直接查看的话用提供的 pstats 来查看。
import pstats # 创建Stats对象 p = pstats.Stats("result.out") # strip_dirs(): 去掉无关的路径信息 # sort_stats(): 排序,支持的方式和上述的一致 # print_stats(): 打印分析结果,可以指定打印前几行 # 和直接运行cProfile.run("test()")的结果是一样的 p.strip_dirs().sort_stats(-1).print_stats() # 按照函数名排序,只打印前3行函数的信息, 参数还可为小数,表示前百分之几的函数信息 p.strip_dirs().sort_stats("name").print_stats(3) # 按照运行时间和函数名进行排序 p.strip_dirs().sort_stats("cumulative", "name").print_stats(0.5) # 如果想知道有哪些函数调用了sum_num p.print_callers(0.5, "sum_num") # 查看test()函数中调用了哪些函数 p.print_callees("test")
截取一个查看test()调用了哪些函数的输出示例:
➜ python python profile.py Random listing order was used List reduced from 6 to 2 due to restriction <"test"> Function called... ncalls tottime cumtime profile.py:24(test2) -> 2 0.061 0.077 profile.py:3(sum_num) 1 0.000 0.000 {range} profile.py:10(test) -> 5 0.073 0.094 profile.py:3(sum_num) 1 0.002 0.079 profile.py:24(test2) 1 0.001 0.001 {range}profile.Profile
cProfile还提供了可以自定义的类,可以更精细的分析, 具体看文档。
格式如: class profile.Profile(timer=None, timeunit=0.0, subcalls=True, builtins=True)
下面这个例子来自官方文档:
import cProfile, pstats, StringIO pr = cProfile.Profile() pr.enable() # ... do something ... pr.disable() s = StringIO.StringIO() sortby = "cumulative" ps = pstats.Stats(pr, stream=s).sort_stats(sortby) ps.print_stats() print s.getvalue()lineprofiler
lineprofiler是一个对函数进行逐行性能分析的工具,可以参见github项目说明,地址: https://github.com/rkern/line...
示例#coding=utf8 def sum_num(max_num): total = 0 for i in range(max_num): total += i return total @profile # 添加@profile 来标注分析哪个函数 def test(): total = 0 for i in range(40000): total += i t1 = sum_num(10000000) t2 = sum_num(200000) t3 = sum_num(300000) t4 = sum_num(400000) t5 = sum_num(500000) test2() return total def test2(): total = 0 for i in range(40000): total += i t6 = sum_num(600000) t7 = sum_num(700000) return total test()
通过 kernprof 命令来注入分析,运行结果如下:
➜ kernprof -l -v profile.py Wrote profile results to profile.py.lprof Timer unit: 1e-06 s Total time: 3.80125 s File: profile.py Function: test at line 10 Line # Hits Time Per Hit % Time Line Contents ============================================================== 10 @profile 11 def test(): 12 1 5 5.0 0.0 total = 0 13 40001 19511 0.5 0.5 for i in range(40000): 14 40000 19066 0.5 0.5 total += i 15 16 1 2974373 2974373.0 78.2 t1 = sum_num(10000000) 17 1 58702 58702.0 1.5 t2 = sum_num(200000) 18 1 81170 81170.0 2.1 t3 = sum_num(300000) 19 1 114901 114901.0 3.0 t4 = sum_num(400000) 20 1 155261 155261.0 4.1 t5 = sum_num(500000) 21 1 378257 378257.0 10.0 test2() 22 23 1 2 2.0 0.0 return total
hits(执行次数) 和 time(耗时) 值高的地方是有比较大优化空间的地方。
memoryprofiler类似于"lineprofiler"对基于行分析程序内存使用情况的模块。github 地址:https://github.com/fabianp/me... 。ps:安装 psutil, 会分析的更快。
同样是上面"lineprofiler"中的代码,运行 python -m memory_profiler profile.py 命令生成结果如下:
➜ python -m memory_profiler profile.py Filename: profile.py Line # Mem usage Increment Line Contents ================================================ 10 24.473 MiB 0.000 MiB @profile 11 def test(): 12 24.473 MiB 0.000 MiB total = 0 13 25.719 MiB 1.246 MiB for i in range(40000): 14 25.719 MiB 0.000 MiB total += i 15 16 335.594 MiB 309.875 MiB t1 = sum_num(10000000) 17 337.121 MiB 1.527 MiB t2 = sum_num(200000) 18 339.410 MiB 2.289 MiB t3 = sum_num(300000) 19 342.465 MiB 3.055 MiB t4 = sum_num(400000) 20 346.281 MiB 3.816 MiB t5 = sum_num(500000) 21 356.203 MiB 9.922 MiB test2() 22 23 356.203 MiB 0.000 MiB return totalTODO objgraph 参考资料:
https://docs.python.org/2/lib...
http://xianglong.me/article/a...
http://www.cnblogs.com/btchen...
https://www.huyng.com/posts/p...
http://www.marinamele.com/7-t...
NEXT 代码的调优tips文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/44260.html
摘要:主要用途为查找是否有公开的网站为。但缺点是该网站限制网络发包的速度,采用了单线程的方式,扫描耗时较长。希望本篇文章能对你有所帮助,有错误的地方,欢迎指出喜欢的话,不要忘记点赞哦 ...
摘要:火爆是当今非常热门的语言之一,根据年月编程语言排行,荣获年度编程语言称号,并且其流行度依然处在上升势头。学习完技能树之后,你将进入编程的大门,明白编程的作用,建立编程的兴趣方法和习惯。 ? 作者主页:不吃西红柿 ? 简介:CSDN博客专家?、HDZ核心组成员? 、Python领域优质创作者...
摘要:根据在年的调查显示,近的数据科学家使用作为主要的编程语言,每一次的进步都是它成为数据分析主流工具的重要因素。根据进行的一项调查显示,在上的月活跃用户的占比在年后大幅上升。 昨天,微信的Python交流群出现了这样的对话: showImg(https://segmentfault.com/img/bVbjV16?w=700&h=425); 看到这部分代码交流,让我不禁感受到Python的...
摘要:是一个文章内容提取器,可以从任意资讯文章类的网页中提取文章主体,并提取标题标签摘要图片视频等信息,且支持中文网页。 爬虫抓取数据有两个头疼的点,写过爬虫的小伙伴们一定都深有体会: 网站的 防抓取 机制。你要尽可能将自己伪装成一个人,骗过对方的服务器反爬验证。 网站的 内容提取 。每个网站都需要你做不同的处理,而且网站一旦改版,你的代码也得跟着更新。 第一点没什么捷径可走,套路见得多...
阅读 2452·2021-11-23 09:51
阅读 503·2019-08-30 13:59
阅读 1819·2019-08-29 11:20
阅读 2529·2019-08-26 13:41
阅读 3237·2019-08-26 12:16
阅读 729·2019-08-26 10:59
阅读 3321·2019-08-26 10:14
阅读 601·2019-08-23 17:21