资讯专栏INFORMATION COLUMN

『 Spark 』1. spark 简介

G9YH / 805人阅读

摘要:原文链接简介写在前面本系列是综合了自己在学习过程中的理解记录对参考文章中的一些理解个人实践过程中的一些心得而来。其次,本系列是基于目前最新的系列开始的,目前的更新速度很快,记录一下版本好还是必要的。

原文链接:『 Spark 』1. spark 简介

写在前面

本系列是综合了自己在学习spark过程中的理解记录 + 对参考文章中的一些理解 + 个人实践spark过程中的一些心得而来。写这样一个系列仅仅是为了梳理个人学习spark的笔记记录,并非为了做什么教程,所以一切以个人理解梳理为主,没有必要的细节就不会记录了。若想深入了解,最好阅读参考文章和官方文档。

其次,本系列是基于目前最新的 spark 1.6.0 系列开始的,spark 目前的更新速度很快,记录一下版本好还是必要的。
最后,如果各位觉得内容有误,欢迎留言备注,所有留言 24 小时内必定回复,非常感谢。
Tips: 如果插图看起来不明显,可以:1. 放大网页;2. 新标签中打开图片,查看原图哦。

1. 如何向别人介绍 spark

Apache Spark™ is a fast and general engine for large-scale data processing.

Apache Spark is a fast and general-purpose cluster computing system.
It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs.
It also supports a rich set of higher-level tools including :

Spark SQL for SQL and structured data processing, extends to DataFrames and DataSets

MLlib for machine learning

GraphX for graph processing

Spark Streaming for stream data processing

2. spark 诞生的一些背景


Spark started in 2009, open sourced 2010, unlike the various specialized systems[hadoop, storm], Spark’s goal was to :

generalize MapReduce to support new apps within same engine

it"s perfectly compatible with hadoop, can run on Hadoop, Mesos, standalone, or in the cloud. It can access diverse data sources including HDFS, Cassandra, HBase, and S3.

speed up iteration computing over hadoop.

use memory + disk instead of disk as data storage medium

design a new programming modal, RDD, which make the data processing more graceful [RDD transformation, action, distributed jobs, stages and tasks]


3. 为何选用 spark

designed, implemented and used as libs, instead of specialized systems;

much more useful and maintainable

from history, it is designed and improved upon hadoop and storm, it has perfect genes;

documents, community, products and trends;

it provides sql, dataframes, datasets, machine learning lib, graph computing lib and activitily growth 3-party lib, easy to use, cover lots of use cases in lots field;

it provides ad-hoc exploring, which boost your data exploring and pre-processing and help you build your data ETL, processing job;

4. Next

下一篇,简单介绍 spark 里必须深刻理解的基本概念。

参考文章

Intro to Apache Spark

introducing spark

本系列文章链接

『 Spark 』1. spark 简介

『 Spark 』2. spark 基本概念解析

『 Spark 』3. spark 编程模式

『 Spark 』4. spark 之 RDD

『 Spark 』5. 这些年,你不能错过的 spark 学习资源

『 Spark 』6. 深入研究 spark 运行原理之 job, stage, task

『 Spark 』7. 使用 Spark DataFrame 进行大数据分析

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/44202.html

相关文章

  • 大数据入门指南(GitHub开源项目)

    摘要:项目地址前言大数据技术栈思维导图大数据常用软件安装指南一分布式文件存储系统分布式计算框架集群资源管理器单机伪集群环境搭建集群环境搭建常用命令的使用基于搭建高可用集群二简介及核心概念环境下的安装部署和命令行的基本使用常用操作分区表和分桶表视图 项目GitHub地址:https://github.com/heibaiying... 前 言 大数据技术栈思维导图 大数据常用软件安装指...

    guyan0319 评论0 收藏0
  • Spark 』5. 这些年,你不能错过的 spark 学习资源

    摘要:原文链接这些年,你不能错过的学习资源写在前面本系列是综合了自己在学习过程中的理解记录对参考文章中的一些理解个人实践过程中的一些心得而来。 原文链接:『 Spark 』5. 这些年,你不能错过的 spark 学习资源 写在前面 本系列是综合了自己在学习spark过程中的理解记录 + 对参考文章中的一些理解 + 个人实践spark过程中的一些心得而来。写这样一个系列仅仅是为了梳理个人学习s...

    mist14 评论0 收藏0

发表评论

0条评论

最新活动
阅读需要支付1元查看
<