资讯专栏INFORMATION COLUMN

机器学习2——决策树

2501207950 / 3196人阅读

摘要:决策树是一种十分常用的分类方法,作为一个预测模型,决策树表示对象属性与对象值之间的一种映射关系。判断类型测试评价以上决策树的的实现方式,没有剪枝的步骤,容易发生过度拟合,导致决策树过高。

决策树(Decision Tree)是一种十分常用的分类方法,作为一个预测模型,决策树表示对象属性与对象值之间的一种映射关系。
1. 信息熵和信息增益 1.1 信息熵

公式表示为:其中S表示样本集,c表示样本集合中类别个数,Pi表示第i个类别的概率。

信息熵的意思就是一个变量i(就是这里的类别)可能的变化越多(只和值的种类多少以及发生概率有关),它携带的信息量就越大(因为是相加累计),即类别变量i的信息熵越大。

二分类问题中,当X的概率P(X)为0.5时,表示变量的不确定性最大,此时的熵达到最大值1。

信息熵反映系统的确定程度:信息熵越低,系统越确定;信息熵越高,系统越不确定

1.2 条件熵

公式表示为:其中ti表示属性T的取值。条件熵的直观理解:假设多带带计算明天下雨的信息熵:H(Y)=2,而在已知今天阴天情况下计算明天下雨的条件熵:H(Y|X)=0.5(熵变小,确定性变大,明天下雨的概率变大,信息量减少),这样相减后为1.5,在获得阴天这个信息后,下雨信息不确定性减少了1.5,信息增益很大,所以今天是否时阴天这个特征信息X对明天下雨这个随机变量Y的来说是很重要的。

1.3 信息增益

公式表示为:
信息增益考察某个特征对整个系统的贡献。

2. 算法实现 2.0 数据集描述

通过“不浮出水面能否生存 no surfacing” 和 “是否有脚蹼 flippers”来判断5种海洋生物是否属于鱼类。

2.1 计算信息熵
from math import log

def calcInforEnt(dataSet):
    num = len(dataSet)
    labelCount = {}
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCount.keys():
            labelCount[currentLabel] = 0
        labelCount[currentLabel] += 1  # 统计类别数目,labelCount = {"yes": 2, "no": 3} 
    inforEnt = 0.0
    for key in labelCount:
        prob = float(labelCount[key]) / num
        inforEnt -= prob * log(prob, 2)
    return inforEnt

测试:

dataSet = [[1, 1, "yes"], [1, 1, "yes"], [1, 0, "no"], [0, 1, "no"], [0, 1, "no"]]
calcInforEnt(dataSet)  # 0.9709505944546686
2.2 划分数据集

按照给定特征值划分数据集

def splitDataSet(dateSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

测试:

dataSet = [[1, 1, "yes"], [1, 1, "yes"], [1, 0, "no"], [0, 1, "no"], [0, 1, "no"]]
splitDataSet(dataSet, 0, 1)  # [[1, "yes"], [1, "yes"], [0, "no"]]
splitDataSet(dataSet, 0, 0)  # [[1, "no"], [1, "no"]]
2.3 选择最好的特征划分数据集

遍历整个数据集,循环计算信息熵和splitDataSet()函数,找到最好的特征划分方式。

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1  # 数据集的最后一列表示类标签
    baseEntropy = calcInforEnt(dataSet)
    bestInforGain = 0.0
    bestFeature = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet]  # 取出每个属性的所有值,组成一个数组
        uniqueVals = set(featList)  # 去重
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet) / float(len(dataSet))
            newEntropy +=  prob * calcInforEnt(subDataSet)
        inforGain = bestInforGain - newEntropy
        if inforGain > bestInforGain:
            bestInforGain = inforGain
            bestFeature = i
    return bestFeature

测试:

dataSet = [[1, 1, "yes"], [1, 1, "yes"], [1, 0, "no"], [0, 1, "no"], [0, 1, "no"]]
chooseBestFeatureToSplit(dataSet)  # 0
2.4 递归构建决策树

工作原理:得到原始数据集,基于最佳的属性划分数据集,由于属性存在两个或以上属性值,因此存在两个或以上的数据分支。第一次划分结束后,数据向下传递到树分支中,每个分支按照条件继续分叉。
递归结束条件:程序遍历完所有划分数据集的属性,或者每一个分支下的实例属于相同分类

import operator

def majorityCnt(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys(): 
            classCount[vote] = 0
        classCount[vote] += 1
        sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
        return sortedClassCount[0][0]

# 创建树
def ctrateTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0] == len(classList)):
        return classList[0]  # 类型相同,停止划分
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)  # 遍历结束,返回出现频率最高的特征
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel: {}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]
        myTree[bestFeatLabel][value] = ctrateTree(splitDataSet(dataSet, bestFeat, value), subLabels)
    return myTree 

测试:

dataSet = [[1, 1, "yes"], [1, 1, "yes"], [1, 0, "no"], [0, 1, "no"], [0, 1, "no"]]
labels = ["no surfacing", "flippers"]
ctrateTree(dataSet, labels)  # {"no surfacing": {0: "no", 1: {"flippers":{0: "no", 1: "yes"}}}}
2.5 使用决策树进行分类

比较测试数据与决策树上的值,递归执行该过程直到进入叶子节点,最后将测试数据定义为叶子节点所属的类型。

def classify(inputTree, featLabels, testVec):
    firstStr = inputTree.keys()[0]
    secondDict = inputTree[firstStr]
    featIndex = featLabels.index(firstStr)
    for key in secondDict.keys():
        if testVec[featIndex] == key
            if type(secondDict[key]).__name__ == "dict":  # 判断类型
                classLabel = classify(secondDict[key], featLabels, testVec)
            else:
                classLabel = secondDict[key]
    return classLabel

测试:

inputTree = {"no surfacing": {0: "no", 1: {"flippers":{0: "no", 1: "yes"}}}}
featLabels = ["no surfacing", "flippers"]
classify(inputTree, featLabels, [1, 0])  # "no"
classify(inputTree, featLabels, [1, 1])  # "yes"
3. 评价

以上决策树的ID3的实现方式,没有剪枝的步骤,容易发生过度拟合,导致决策树过高。C4.5决策树的改进策略:

用信息增益率来选择属性,克服了用信息增益选择属性偏向选择多值属性的不足

在构造树的过程中进行剪枝,参考剪枝算法

对连续属性进行离散化

能够对不完整的数据进行处理

4. 参考

《机器学习实战》

信息熵与信息增益

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/43719.html

相关文章

  • 机器学习--决策--dot转存pdf

    摘要:决策树分支转存写代码的方法今天是周日,我还在倒腾决策树,然后发现了一个不用装软件也能倒的方法,而且更简单。刚开始看视频的时候是看的的视频,讲的真差,太模糊了,不适合我。 决策树分支dot转存pdf 1、写代码的方法 今天是周日,我还在倒腾决策树,然后发现了一个不用装软件也能倒pdf的方法,而且更简单。参照了这个中文的文档实现:http://sklearn.apachecn.org/c....

    Bryan 评论0 收藏0
  • BetaMeow----利用机器学习做五子棋AI

    摘要:简言之,机器学习是内功,而数据挖掘则是机器学习的一种用途。但本质上是我在学习机器学习方面的实战项目,所以我想办法利用机器学习的方面的算法实现。 BetaMeow的起源 前段时间AlphaGo和李世石广受关注,作为人工智能的脑残粉,看完比赛后激动不已,因为有一定的机器学习的基础,便打算撸一个棋类的AI,但我还算有点自知之明,围棋AI,甚至google打算做得通用AI是做不出的了,所以打算...

    bingchen 评论0 收藏0

发表评论

0条评论

2501207950

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<