摘要:一安装地址版本首先要阅读官网说明的环境要求,千万不要一股脑直接安装,不然后面程序很有可能会报错一定要按上面的说明一步一步来,千万别省略,不然后面程序很有可能会报错二数据准备我要制作的原始数据格式是训练文件在一个
一、安装
地址:MaskRCNN-Benchmark(Pytorch版本)
首先要阅读官网说明的环境要求,千万不要一股脑直接安装,不然后面程序很有可能会报错!!!
PyTorch 1.0 from a nightly release. It will not work with 1.0 nor 1.0.1. Installation instructions can be found in https://pytorch.org/get-start...
torchvision from master
cocoapi
yacs
matplotlib
GCC >= 4.9
OpenCV
# first, make sure that your conda is setup properly with the right environment # for that, check that `which conda`, `which pip` and `which python` points to the # right path. From a clean conda env, this is what you need to do conda create --name maskrcnn_benchmark conda activate maskrcnn_benchmark # this installs the right pip and dependencies for the fresh python conda install ipython # maskrcnn_benchmark and coco api dependencies pip install ninja yacs cython matplotlib tqdm opencv-python # follow PyTorch installation in https://pytorch.org/get-started/locally/ # we give the instructions for CUDA 9.0 conda install -c pytorch pytorch-nightly torchvision cudatoolkit=9.0 export INSTALL_DIR=$PWD # install pycocotools cd $INSTALL_DIR git clone https://github.com/cocodataset/cocoapi.git cd cocoapi/PythonAPI python setup.py build_ext install # install apex cd $INSTALL_DIR git clone https://github.com/NVIDIA/apex.git cd apex python setup.py install --cuda_ext --cpp_ext # install PyTorch Detection cd $INSTALL_DIR git clone https://github.com/facebookresearch/maskrcnn-benchmark.git cd maskrcnn-benchmark # the following will install the lib with # symbolic links, so that you can modify # the files if you want and won"t need to # re-build it python setup.py build develop unset INSTALL_DIR # or if you are on macOS # MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py build develop
一定要按上面的说明一步一步来,千万别省略,不然后面程序很有可能会报错!!!
二、数据准备
我要制作的原始数据格式是训练文件在一个文件(train),标注文件是csv格式,内容如下:
第一步,先把全部有标记的图片且分为训练集,验证集,分别存储在两个文件夹中,代码如下:
#!/usr/bin/env python # coding=UTF-8 """ @Description: @Author: HuangQinJian @LastEditors: HuangQinJian @Date: 2019-05-01 12:56:08 @LastEditTime: 2019-05-01 13:11:38 """ import pandas as pd import random import os import shutil if not os.path.exists("trained/"): os.mkdir("trained/") if not os.path.exists("val/"): os.mkdir("val/") val_rate = 0.15 img_path = "train/" img_list = os.listdir(img_path) train = pd.read_csv("train_label_fix.csv") # print(img_list) random.shuffle(img_list) total_num = len(img_list) val_num = int(total_num*val_rate) train_num = total_num-val_num for i in range(train_num): img_name = img_list[i] shutil.copy("train/" + img_name, "trained/" + img_name) for j in range(val_num): img_name = img_list[j+train_num] shutil.copy("train/" + img_name, "val/" + img_name)
第二步,把csv格式的标注文件转换成coco的格式,代码如下:
#!/usr/bin/env python # coding=UTF-8 """ @Description: @Author: HuangQinJian @LastEditors: HuangQinJian @Date: 2019-04-23 11:28:23 @LastEditTime: 2019-05-01 13:15:57 """ import sys import os import json import cv2 import pandas as pd START_BOUNDING_BOX_ID = 1 PRE_DEFINE_CATEGORIES = {} def convert(csv_path, img_path, json_file): """ csv_path : csv文件的路径 img_path : 存放图片的文件夹 json_file : 保存生成的json文件路径 """ json_dict = {"images": [], "type": "instances", "annotations": [], "categories": []} bnd_id = START_BOUNDING_BOX_ID categories = PRE_DEFINE_CATEGORIES csv = pd.read_csv(csv_path) img_nameList = os.listdir(img_path) img_num = len(img_nameList) print("图片总数为{0}".format(img_num)) for i in range(img_num): # for i in range(30): image_id = i+1 img_name = img_nameList[i] if img_name == "60f3ea2534804c9b806e7d5ae1e229cf.jpg" or img_name == "6b292bacb2024d9b9f2d0620f489b1e4.jpg": continue # 可能需要根据具体格式修改的地方 lines = csv[csv.filename == img_name] img = cv2.imread(os.path.join(img_path, img_name)) height, width, _ = img.shape image = {"file_name": img_name, "height": height, "width": width, "id": image_id} print(image) json_dict["images"].append(image) for j in range(len(lines)): # 可能需要根据具体格式修改的地方 category = str(lines.iloc[j]["type"]) if category not in categories: new_id = len(categories) categories[category] = new_id category_id = categories[category] # 可能需要根据具体格式修改的地方 xmin = int(lines.iloc[j]["X1"]) ymin = int(lines.iloc[j]["Y1"]) xmax = int(lines.iloc[j]["X3"]) ymax = int(lines.iloc[j]["Y3"]) # print(xmin, ymin, xmax, ymax) assert(xmax > xmin) assert(ymax > ymin) o_width = abs(xmax - xmin) o_height = abs(ymax - ymin) ann = {"area": o_width*o_height, "iscrowd": 0, "image_id": image_id, "bbox": [xmin, ymin, o_width, o_height], "category_id": category_id, "id": bnd_id, "ignore": 0, "segmentation": []} json_dict["annotations"].append(ann) bnd_id = bnd_id + 1 for cate, cid in categories.items(): cat = {"supercategory": "none", "id": cid, "name": cate} json_dict["categories"].append(cat) json_fp = open(json_file, "w") json_str = json.dumps(json_dict, indent=4) json_fp.write(json_str) json_fp.close() if __name__ == "__main__": # csv_path = "data/train_label_fix.csv" # img_path = "data/train/" # json_file = "train.json" csv_path = "train_label_fix.csv" img_path = "trained/" json_file = "trained.json" convert(csv_path, img_path, json_file) csv_path = "train_label_fix.csv" img_path = "val/" json_file = "val.json" convert(csv_path, img_path, json_file)
第三步,可视化转换后的coco的格式,以确保转换正确,代码如下:
(注意:在这一步中,需要先下载 cocoapi , 可能出现的 问题)
#!/usr/bin/env python # coding=UTF-8 """ @Description: @Author: HuangQinJian @LastEditors: HuangQinJian @Date: 2019-04-23 13:43:24 @LastEditTime: 2019-04-30 21:29:26 """ from pycocotools.coco import COCO import skimage.io as io import matplotlib.pyplot as plt import pylab import cv2 import os from skimage.io import imsave import numpy as np pylab.rcParams["figure.figsize"] = (8.0, 10.0) img_path = "data/train/" annFile = "train.json" if not os.path.exists("anno_image_coco/"): os.makedirs("anno_image_coco/") def draw_rectangle(coordinates, image, image_name): for coordinate in coordinates: left = np.rint(coordinate[0]) right = np.rint(coordinate[1]) top = np.rint(coordinate[2]) bottom = np.rint(coordinate[3]) # 左上角坐标, 右下角坐标 cv2.rectangle(image, (int(left), int(right)), (int(top), int(bottom)), (0, 255, 0), 2) imsave("anno_image_coco/"+image_name, image) # 初始化标注数据的 COCO api coco = COCO(annFile) # display COCO categories and supercategories cats = coco.loadCats(coco.getCatIds()) nms = [cat["name"] for cat in cats] # print("COCO categories: {} ".format(" ".join(nms))) nms = set([cat["supercategory"] for cat in cats]) # print("COCO supercategories: {}".format(" ".join(nms))) img_path = "data/train/" img_list = os.listdir(img_path) # for i in range(len(img_list)): for i in range(7): imgIds = i+1 img = coco.loadImgs(imgIds)[0] image_name = img["file_name"] # print(img) # 加载并显示图片 # I = io.imread("%s/%s" % (img_path, img["file_name"])) # plt.axis("off") # plt.imshow(I) # plt.show() # catIds=[] 说明展示所有类别的box,也可以指定类别 annIds = coco.getAnnIds(imgIds=img["id"], catIds=[], iscrowd=None) anns = coco.loadAnns(annIds) # print(anns) coordinates = [] img_raw = cv2.imread(os.path.join(img_path, image_name)) for j in range(len(anns)): coordinate = [] coordinate.append(anns[j]["bbox"][0]) coordinate.append(anns[j]["bbox"][1]+anns[j]["bbox"][3]) coordinate.append(anns[j]["bbox"][0]+anns[j]["bbox"][2]) coordinate.append(anns[j]["bbox"][1]) # print(coordinate) coordinates.append(coordinate) # print(coordinates) draw_rectangle(coordinates, img_raw, image_name)
三、文件配置
在训练自己的数据集过程中需要修改的地方可能很多,下面我就列出常用的几个:
修改maskrcnn_benchmark/config/paths_catalog.py中数据集路径:
class DatasetCatalog(object): # 看自己的实际情况修改路径!!! # 看自己的实际情况修改路径!!! # 看自己的实际情况修改路径!!! DATA_DIR = "" DATASETS = { "coco_2017_train": { "img_dir": "coco/train2017", "ann_file": "coco/annotations/instances_train2017.json" }, "coco_2017_val": { "img_dir": "coco/val2017", "ann_file": "coco/annotations/instances_val2017.json" }, # 改成训练集所在路径!!! # 改成训练集所在路径!!! # 改成训练集所在路径!!! "coco_2014_train": { "img_dir": "/data1/hqj/traffic-sign-identification/trained", "ann_file": "/data1/hqj/traffic-sign-identification/trained.json" }, # 改成验证集所在路径!!! # 改成验证集所在路径!!! # 改成验证集所在路径!!! "coco_2014_val": { "img_dir": "/data1/hqj/traffic-sign-identification/val", "ann_file": "/data1/hqj/traffic-sign-identification/val.json" }, # 改成测试集所在路径!!! # 改成测试集所在路径!!! # 改成测试集所在路径!!! "coco_2014_test": { "img_dir": "/data1/hqj/traffic-sign-identification/test" ...
config下的配置文件:
由于这个文件下的参数很多,往往需要根据自己的具体需求改,我就列出自己的配置(使用的是e2e_faster_rcnn_X_101_32x8d_FPN_1x.yaml,其中我有注释的必须改,比如 NUM_CLASSES):
INPUT: MIN_SIZE_TRAIN: (1000,) MAX_SIZE_TRAIN: 1667 MIN_SIZE_TEST: 1000 MAX_SIZE_TEST: 1667 MODEL: META_ARCHITECTURE: "GeneralizedRCNN" WEIGHT: "catalog://ImageNetPretrained/FAIR/20171220/X-101-32x8d" BACKBONE: CONV_BODY: "R-101-FPN" RPN: USE_FPN: True BATCH_SIZE_PER_IMAGE: 128 ANCHOR_SIZES: (16, 32, 64, 128, 256) ANCHOR_STRIDE: (4, 8, 16, 32, 64) PRE_NMS_TOP_N_TRAIN: 2000 PRE_NMS_TOP_N_TEST: 1000 POST_NMS_TOP_N_TEST: 1000 FPN_POST_NMS_TOP_N_TEST: 1000 FPN_POST_NMS_TOP_N_TRAIN: 1000 ASPECT_RATIOS : (1.0,) FPN: USE_GN: True ROI_HEADS: # 是否使用FPN USE_FPN: True ROI_BOX_HEAD: USE_GN: True POOLER_RESOLUTION: 7 POOLER_SCALES: (0.25, 0.125, 0.0625, 0.03125) POOLER_SAMPLING_RATIO: 2 FEATURE_EXTRACTOR: "FPN2MLPFeatureExtractor" PREDICTOR: "FPNPredictor" # 修改成自己任务所需要检测的类别数+1 NUM_CLASSES: 22 RESNETS: BACKBONE_OUT_CHANNELS: 256 STRIDE_IN_1X1: False NUM_GROUPS: 32 WIDTH_PER_GROUP: 8 DATASETS: # paths_catalog.py文件中的配置,数据集指定时如果仅有一个数据集不要忘了逗号(如:("coco_2014_val",)) TRAIN: ("coco_2014_train",) TEST: ("coco_2014_val",) DATALOADER: SIZE_DIVISIBILITY: 32 SOLVER: BASE_LR: 0.001 WEIGHT_DECAY: 0.0001 STEPS: (240000, 320000) MAX_ITER: 360000 # 很重要的设置,具体可以参见官网说明:https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/README.md IMS_PER_BATCH: 1 # 保存模型的间隔 CHECKPOINT_PERIOD: 18000 # 输出文件路径 OUTPUT_DIR: "./weight/"
如果只做检测任务的话,删除 maskrcnn-benchmark/maskrcnn_benchmark/data/datasets/coco.py 中 82-84这三行比较保险。
maskrcnn_benchmark/engine/trainer.py 中 第 90 行可设置输出日志的间隔(默认20,我感觉输出太频繁,看你自己)
四、模型训练
单GPU
官网给出的是:
python /path_to_maskrcnn_benchmark/tools/train_net.py --config-file "/path/to/config/file.yaml"
但是这个默认会使用第一个GPU,如果想指定GPU的话,可以使用以下命令:
# 3是要使用GPU的ID CUDA_VISIBLE_DEVICES=3 python /path_to_maskrcnn_benchmark/tools/train_net.py --config-file "/path/to/config/file.yaml"
如果出现内存溢出的情况,这时候就需要调整参数,具体可以参见官网:内存溢出解决
多GPU
官网给出的是:
export NGPUS=8 python -m torch.distributed.launch --nproc_per_node=$NGPUS /path_to_maskrcnn_benchmark/tools/train_net.py --config-file "path/to/config/file.yaml" MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN images_per_gpu x 1000
但是这个默认会随机使用GPU,如果想指定GPU的话,可以使用以下命令:
# --nproc_per_node=4 是指使用GPU的数目为4 CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 /path_to_maskrcnn_benchmark/tools/train_net.py --config-file "path/to/config/file.yaml"
遗憾的是,多GPU在我的服务器上一直运行不成功,还请大家帮忙解决!!!
问题地址:Multi-GPU training error
五、模型验证
修改 config 配置文件中 WEIGHT: "../weight/model_final.pth"(此处应为训练完保存的权重)
运行命令:
CUDA_VISIBLE_DEVICES=5 python tools/test_net.py --config-file "/path/to/config/file.yaml" TEST.IMS_PER_BATCH 8
其中TEST.IMS_PER_BATCH 8也可以在config文件中直接配置:
TEST: IMS_PER_BATCH: 8
六、模型预测
修改 config 配置文件中 WEIGHT: "../weight/model_final.pth"(此处应为训练完保存的权重)
修改demo/predictor.py中 CATEGORIES ,替换成自己数据的物体类别(如果想可视化结果,没有可以不改,可以参考demo/下面的例子):
class COCODemo(object): # COCO categories for pretty print CATEGORIES = [ "__background", ... ]
新建一个文件 demo/predict.py(需要修改的地方已做注释)
#!/usr/bin/env python # coding=UTF-8 """ @Description: @Author: HuangQinJian @LastEditors: HuangQinJian @Date: 2019-05-01 12:36:04 @LastEditTime: 2019-05-03 17:29:23 """ import os import matplotlib.pylab as pylab import matplotlib.pyplot as plt import numpy as np import pandas as pd from PIL import Image from maskrcnn_benchmark.config import cfg from predictor import COCODemo from tqdm import tqdm # this makes our figures bigger pylab.rcParams["figure.figsize"] = 20, 12 # 替换成自己的配置文件 # 替换成自己的配置文件 # 替换成自己的配置文件 config_file = "../configs/e2e_faster_rcnn_R_50_FPN_1x.yaml" # update the config options with the config file cfg.merge_from_file(config_file) # manual override some options cfg.merge_from_list(["MODEL.DEVICE", "cuda"]) def load(img_path): pil_image = Image.open(img_path).convert("RGB") # convert to BGR format image = np.array(pil_image)[:, :, [2, 1, 0]] return image # 根据自己的需求改 # 根据自己的需求改 # 根据自己的需求改 coco_demo = COCODemo( cfg, min_image_size=1600, confidence_threshold=0.7, ) # 测试图片的路径 # 测试图片的路径 # 测试图片的路径 imgs_dir = "/data1/hqj/traffic-sign-identification/test" img_names = os.listdir(imgs_dir) submit_v4 = pd.DataFrame() empty_v4 = pd.DataFrame() filenameList = [] X1List = [] X2List = [] X3List = [] X4List = [] Y1List = [] Y2List = [] Y3List = [] Y4List = [] TypeList = [] empty_img_name = [] # for img_name in img_names: for i, img_name in enumerate(tqdm(img_names)): path = os.path.join(imgs_dir, img_name) image = load(path) # compute predictions predictions = coco_demo.compute_prediction(image) try: scores = predictions.get_field("scores").numpy() bbox = predictions.bbox[np.argmax(scores)].numpy() labelList = predictions.get_field("labels").numpy() label = labelList[np.argmax(scores)] filenameList.append(img_name) X1List.append(round(bbox[0])) Y1List.append(round(bbox[1])) X2List.append(round(bbox[2])) Y2List.append(round(bbox[1])) X3List.append(round(bbox[2])) Y3List.append(round(bbox[3])) X4List.append(round(bbox[0])) Y4List.append(round(bbox[3])) TypeList.append(label) # print(filenameList, X1List, X2List, X3List, X4List, Y1List, # Y2List, Y3List, Y4List, TypeList) print(label) except: empty_img_name.append(img_name) print(empty_img_name) submit_v4["filename"] = filenameList submit_v4["X1"] = X1List submit_v4["Y1"] = Y1List submit_v4["X2"] = X2List submit_v4["Y2"] = Y2List submit_v4["X3"] = X3List submit_v4["Y3"] = Y3List submit_v4["X4"] = X4List submit_v4["Y4"] = Y4List submit_v4["type"] = TypeList empty_v4["filename"] = empty_img_name submit_v4.to_csv("submit_v4.csv", index=None) empty_v4.to_csv("empty_v4.csv", index=None)
运行命令:
CUDA_VISIBLE_DEVICES=5 python demo/predict.py
七、结束语
1. 若有修改maskrcnn-benchmark文件夹下的代码,一定要重新编译!一定要重新编译!一定要重新编译!
2. 更多精彩内容,欢迎前往我的 CSDN
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/43708.html
摘要:近日,开源了和的实现基准。是商汤和港中文近日联合开源的基于的开源目标检测工具包。你也可以配置你自己的到数据集的路径。 近日,Facebook AI Research 开源了 Faster R-CNN 和 Mask R-CNN 的 PyTorch 1.0 实现基准:MaskRCNN-Benchmark。相比 Detectron 和 mmdetection,MaskRCNN-Benchmark ...
摘要:受到其他同行在上讨论更好经验的激励,我决定买一个专用的深度学习盒子放在家里。下面是我的选择从选择配件到基准测试。即便是深度学习的较佳选择,同样也很重要。安装大多数深度学习框架是首先基于系统开发,然后逐渐扩展到支持其他操作系统。 在用了十年的 MacBook Airs 和云服务以后,我现在要搭建一个(笔记本)桌面了几年时间里我都在用越来越薄的 MacBooks 来搭载一个瘦客户端(thin c...
摘要:我认为对机器学习开发者来说,是一个了不起的工具集。这个帖子发出后得到了很多机器学习研究者和开发者的关注,他们纷纷跟贴谈论自己的想法和经验不只是关于和,讨论中还涉及到更多工具。 Theano、TensorFlow、Torch、MXNet 再到近日比较热门的 PyTorch 等等,深度学习框架之间的比较一直以来都是非常受人关注的热点话题。机器之心也曾发表过多篇相关的介绍和对比文章,如《主流深度学...
阅读 2653·2023-04-26 00:42
阅读 2803·2021-09-24 10:34
阅读 3815·2021-09-24 09:48
阅读 4152·2021-09-03 10:28
阅读 2578·2019-08-30 15:56
阅读 2773·2019-08-30 15:55
阅读 3256·2019-08-29 12:46
阅读 2247·2019-08-28 17:52