摘要:在本节中,我们将看到一些最流行和最常用的库,用于机器学习和深度学习是用于数据挖掘,分析和机器学习的最流行的库。愿码提示网址是一个基于的框架,用于使用多个或进行有效的机器学习和深度学习。
来源 | 愿码(ChainDesk.CN)内容编辑
愿码Slogan | 连接每个程序员的故事
网站 | http://chaindesk.cn
愿码愿景 | 打造全学科IT系统免费课程,助力小白用户、初级工程师0成本免费系统学习、低成本进阶,帮助BAT一线资深工程师成长并利用自身优势创造睡后收入。
官方公众号 | 愿码 | 愿码服务号 | 区块链部落
免费加入愿码全思维工程师社群 | 任一公众号回复“愿码”两个字获取入群二维码
本文阅读时长:10min
在过去的五年中,Python已成为数据科学界的一大热门 。因此,它正在慢慢接管R--“统计学术语” - 作为许多工具的首选工具。最近发布的Stack Overflow Developer Survey 2018表明, Python是下一个重要的编程语言,它在业界的应用将不断增加。Python的崛起令人震惊,但并不令人惊讶。它的通用性,再加上效率和易用性,使您可以更轻松地构建数据科学。您还可以使用丰富的Python库来处理所有与数据科学相关的任务,从基本的Web抓取到训练深度学习模型等复杂的任务 。
在本文中,我们将介绍一些最流行和最广泛使用的Python库及其应用领域。
在网络浏览器的帮助下,网络抓取是使用HTTP协议从网络上流行的信息提取技术。两种最常用的Web抓取工具是基于Python的。
Beautiful Soup是一个流行的Python库,用于从HTML和XML文件中提取信息。它提供了一种独特,简便的方法来导航,搜索和修改已分析的数据,从而可以节省您不必要的工作时间。它适用于Python的两个版本,即2.7和3.x,并且非常易于使用。
愿码提示
Beautiful Soup网址:https://pypi.org/project/beau...
Scrapy是一个用Python编写的免费开源框架。虽然开发用于Web抓取,但它也可以用作常规Web爬虫程序并使用不同的API提取数据。遵循Django等框架的“不要重复自己”的理念 ,Scrapy包含一组自包含的爬虫,每个爬虫都遵循具体目标的特定指令。
愿码提示
Scrapy网址:https://scrapy.org/
科学计算与数据分析可以说是最常见的数据科学任务,通过为数据处理和分析以及数学计算提供独特的库,从而证明了对数据科学家来说非常有价值。
NumPy是Python中最受欢迎的科学计算库,它是用于科学计算的更大的Python堆栈的一部分,称为SciPy(下面讨论)。除了在线性代数和其他数学函数中的用途之外,它还可以用作具有任意数据类型的通用数据的多维容器或数组。
NumPy集成了无缝语言(如C / C ++),并且由于它支持多种数据类型,因此它也适用于各种数据库。
愿码提示
NumPy网址:http://www.numpy.org/
SciPy是一个基于Python的框架,包含用于数学,科学计算和数据分析的开源库 。SciPy库是用于高级数学计算,统计等的算法和工具的集合。SciPy堆栈包含以下库:
· NumPy - 用于数值计算的Python包
· SciPy - SciPy堆栈的核心软件包之一,用于信号处理,优化和高级统计
· matplotlib - 用于数据可视化的流行Python库
· SymPy - 符号数学和代数库
· pandas - 用于数据操作和分析的Python库
· iPython - 用于运行基于Python的代码的交互式控制台
愿码提示
SciPy网址:https://www.scipy.org/index.html
pandas是一个广泛使用的Python包,提供有效数据操作和分析的数据结构和工具。它是一种广泛使用的定量分析工具,在算法交易和风险分析中发现了很多应用。
拥有庞大的专用用户社区,定期更新pandas以获得新的API更改,性能更新和错误修复。
愿码提示
pandas网址:https://pandas.pydata.org/
机器学习和深度学习Python在实现高效的机器学习和深度学习模型方面胜过所有其他语言 ,仅凭借其多样化,有效且易于使用的库集。在本节中,我们将看到一些最流行和最常用的Python库,用于机器学习和深度学习:
scikit-learn是用于数据挖掘,分析和机器学习的最流行的Python库。它使用NumPy,SciPy和matplotlib的功能构建,并且在商业上可用。您可以使用scikit-learn实现各种机器学习技术,例如分类,回归,集群等且非常易于安装。
愿码提示
scikit-learn网址:https://scikit-learn.org/stable/
Tensorflow是一个基于Python的框架,用于使用多个CPU或GPU进行有效的机器学习和深度学习。由Google支持,最初由Google Brain的研究团队开发,是世界上广泛使用的机器智能框架。它得到了大量活跃用户的支持,并且正在广泛应用于各种工业领域的先进机器学习,从制造和零售到医疗保健和智能汽车。
愿码提示
Tensorflow网址:https://www.tensorflow.org/
Keras是一个基于Python的神经网络API,提供了一个简化的界面,可以轻松地训练和部署您的深度学习模型。它支持各种深度学习框架,如Tensorflow,Deeplearning4j和CNTK且非常人性化,遵循模块化方法,支持基于CPU和GPU的计算。如果您想让深度学习过程更简单有效,那么这个库绝对值得一试!
愿码提示
Keras网址:https://keras.io/
PyTorch是Python深度学习系列的最新成员之一,它是一个具有强大GPU支持的神经网络建模库。尽管仍处于测试阶段,但该项目得到了Facebook和Twitter等大人物的支持。PyTorch建立在另一个流行的深度库Torch的架构之上,以实现更高效的张量计算和动态神经网络的实现。
愿码提示
PyTorch网址:https://pytorch.org/
自然语言处理自然语言处理涉及设计处理,解释和分析人类语言,口头或书面的系统。Python提供了独特的库,用于执行各种任务,例如使用结构化和非结构化文本,预测分析等等。
NLTK是一个流行的语言处理Python库。它为各种NLP任务提供了易于使用的界面,例如文本分类,标记化,文本解析,语义推理等等。它是一个开源的,社区驱动的项目,并且支持Python 2和Python 3。
愿码提示
NLTK网址:http://www.nltk.org/
SpaCy是另一个基于Python和Cython的高级自然语言处理库。它广泛支持各种深度学习库和框架,如Tensorflow和PyTorch。使用SpaCy,您可以相对轻松地为NLP构建复杂的统计模型。SpaCy易于安装和使用,在大规模提取和分析文本信息方面证明是非常有用的。
愿码提示
SpaCy网址:https://spacy.io/
数据可视化数据可视化是一种广泛使用的数据科学技术,用于通过图形,图表,仪表板和报告直观地分析和传递信息和有价值的业务洞察。Python提供了许多流行的库来进行有效的数据叙述。其中一些列表如下:
matplotlib是最受欢迎的数据可视化Python库,允许进行企业级2D和3D绘图。使用matplotlib,您可以使用几行代码构建不同类型的可视化,例如直方图,条形图,散点图等等。matplotlib的受欢迎程度可与R广受好评的ggplot2相媲美,Matplotlib可以在所有Python控制台上无缝运行,包括iPython和Jupyter笔记本电脑,为您提供创建和共享数据可视化所需的所有必要工具。
愿码提示
matplotlib网址:https://matplotlib.org/
Seaborn是一个基于Python的数据可视化库,它源于matplotlib。除了提供有吸引力且富有洞察力的数据可视化之外,seaborn还为其他Python库提供强大支持,例如NumPy和pandas。
愿码提示
Seaborn网址:https://seaborn.pydata.org/in...
Bokeh是一个基于Python的交互式数据可视化库。它旨在提供D3.js风格优雅的图形和可视化,主要在现代Web浏览器上运行。除了能够创建各种可视化外,Bokeh还支持实时数据集的大规模交互和可视化。
愿码提示
Bokeh网址:https://bokeh.pydata.org/en/l...
Plotly是一个广泛使用的Python库,在世界各地用于制作出版品质的图表。使用Plotly,您可以轻松地构建交互式仪表板,散点图,直方图,烛台图表,热图以及大量其他数据可视化。凭借出色的交互性,部署和发布功能,Plotly可用于不同领域,主要是财务和地理空间行业,以进行有效的数据叙述。
愿码提示
Plotly网址:https://plot.ly/python/
Python为每个与数据科学相关的任务提供了一套广泛的库,每个库都配备了独特的功能,可以快速,轻松地完成任务。虽然有很多Python库,但我们可以根据它们的受欢迎程度,实用性以及它们带来的价值来挑选这15个库。
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/43634.html
摘要:研究人员和机器学习的作者对于数学和面向数据的人来说,非常容易使用。这对于机器学习和领域的工作是非常重要的。高级脚本语言非常适合人工智能和机器学习,因为我们可以快速移动并重试。 摘要: 为什么Python会在这股深度学习浪潮中成为编程语言的头牌?听听大牛如何解释吧! showImg(https://segmentfault.com/img/bV59KD?w=780&h=405); 1.P...
摘要:研究人员和机器学习的作者对于数学和面向数据的人来说,非常容易使用。这对于机器学习和领域的工作是非常重要的。高级脚本语言非常适合人工智能和机器学习,因为我们可以快速移动并重试。 摘要: 为什么Python会在这股深度学习浪潮中成为编程语言的头牌?听听大牛如何解释吧! showImg(https://segmentfault.com/img/bV59KD?w=780&h=405); 1.P...
摘要:是额外的软件包,专为像图像处理和机器学习辅助等特定功能而设计。它建立在之上,中集成了有质量的代码和良好的文档简单易用并且十分高效,是使用进行机器学习的实际行业标准。 众所周知,Python语法简捷而清晰,具有丰富和强大的类库,被广泛应用于云计算、Web开发、系统运维、科学运算、以及人工智...
摘要:去吧,参加一个在上正在举办的实时比赛吧试试你所学到的全部知识微软雅黑深度学习终于看到这个,兴奋吧现在,你已经学到了绝大多数关于机器学习的技术,是时候试试深度学习了。微软雅黑对于深度学习,我也是个新手,就请把这些建议当作参考吧。 如果你想做一个数据科学家,或者作为一个数据科学家你想扩展自己的工具和知识库,那么,你来对地方了。这篇文章的目的,是给刚开始使用Python进行数据分析的人,指明一条全...
阅读 2813·2023-04-25 15:01
阅读 3011·2021-11-23 10:07
阅读 3357·2021-10-12 10:12
阅读 3443·2021-08-30 09:45
阅读 2183·2021-08-20 09:36
阅读 3566·2019-08-30 12:59
阅读 2424·2019-08-26 13:52
阅读 927·2019-08-26 13:24