摘要:调试器可帮助程序员分析完整的代码。我们将使用标准库中的模块调试我们的脚本。例外是程序执行期间发生的错误。设置断点并检查堆栈帧,并列出源代码。输入以继续调试。分析和计时程序分析程序意味着测量程序的执行时间。的模块用于分析程序。
来源 | 愿码(ChainDesk.CN)内容编辑
愿码Slogan | 连接每个程序员的故事
网站 | http://chaindesk.cn
愿码愿景 | 打造全学科IT系统免费课程,助力小白用户、初级工程师0成本免费系统学习、低成本进阶,帮助BAT一线资深工程师成长并利用自身优势创造睡后收入。
官方公众号 | 愿码 | 愿码服务号 | 区块链部落
免费加入愿码全思维工程师社群 | 任一公众号回复“愿码”两个字获取入群二维码
本文阅读时长:11min
调试和分析在Python开发中发挥重要作用 。调试器可帮助程序员分析完整的代码。调试器设置断点,而分析器运行我们的代码并向我们提供执行时间的详细信息,分析器将识别程序中的瓶颈。
Python调试技术调试是一个解决代码中出现的问题并阻止软件正常运行的过程。在Python中,调试非常简单。Python调试器设置条件断点并一次调试一行源代码。我们将使用pdb Python标准库中的模块调试我们的Python脚本 。
为了更好地调试Python程序,可以使用各种技术。我们将讨论Python调试的四种技术:
print() 声明:这是了解发生了什么的最简单方法,因此您可以检查已执行的内容。
logging:这就像一个print声明,但有更多的上下文信息,所以你可以完全理解它。
pdb debugger:这是一种常用的调试技术。使用的优点pdb是您可以pdb从命令行,解释器和程序中使用。
IDE调试器:IDE具有集成调试器。它允许开发人员执行他们的代码,然后开发人员可以在程序执行时进行检查。
错误处理(异常处理)在本节中,我们将学习Python如何处理异常。例外是程序执行期间发生的错误。每当发生任何错误时,Python都会生成一个异常,该异常将使用try ... except块进行处理。程序无法处理某些异常,因此会导致错误消息。现在,我们将看到一些异常示例。
在终端中,启动 python3交互式控制台,我们将看到一些异常示例:
student@ubuntu:~$ python3 Python 3.5.2 (default, Nov 23 2017, 16:37:01) [GCC 5.4.0 20160609] on linux Type "help", "copyright", "credits" or "license" for more information. >>> >>> 50 / 0 Traceback (most recent call last): File "", line 1, in ZeroDivisionError: division by zero >>> >>> 6 + abc*5 Traceback (most recent call last): File "", line 1, in NameError: name "abc" is not defined >>> >>> "abc" + 2 Traceback (most recent call last): File "", line 1, in TypeError: Can"t convert "int" object to str implicitly >>> >>> import abcd Traceback (most recent call last): File "", line 1, in ImportError: No module named "abcd" >>>
这些是例外的一些例子。现在,我们将看到我们如何处理异常。
每当Python程序中发生错误时,都会引发异常。我们还可以使用raise关键字强制引发异常。
现在我们将看到一个try…except处理异常的块。在try块中,我们将编写可能生成异常的代码。在except块中,我们将为该异常编写解决方案。
语法 try…except如下:
try: statement(s) except: statement(s)
一个try块可以有多个except语句。我们也可以通过在except关键字后面输入例外名称来处理特定的例外。处理特定异常的语法如下:
try: statement(s) except exception_name: statement(s)
我们将创建一个exception_example.py 要捕获的脚本ZeroDivisionError。在脚本中编写以下代码:
a = 35 b = 57 try: c = a + b print("The value of c is: ", c) d = b / 0 print("The value of d is: ", d) except: print("Division by zero is not possible") print("Out of try...except block")
按如下所示运行脚本,您将获得以下输出:
student@ubuntu:~$ python3 exception_example.py The value of c is: 92 Division by zero is not possible Out of try...except block调试器工具
Python支持许多调试工具:
winpdb
pydev
pydb
pdb
gdb
pyDebug
在本节中,我们将学习pdb Python调试器。pdbmodule是Python标准库的一部分,始终可供使用。
该pdb模块用于调试Python程序。Python程序使用pdb交互式源代码调试器来调试程序。pdb设置断点并检查堆栈帧,并列出源代码。
现在我们将了解如何使用pdb调试器。有三种方法可以使用此调试器:
· 在解释器中
· 从命令行
· 在Python脚本中
我们将创建一个pdb_example.py脚本并在该脚本中添加以下内容:
class Student: def __init__(self, std): self.count = std def print_std(self): for i in range(self.count): print(i) return if __name__ == "__main__": Student(5).print_std()
以此脚本为例学习Python调试,我们将看到如何详细启动调试器。
在解释器中要从Python交互式控制台启动调试器,我们使用run()或runeval()。
启动python3交互式控制台。运行以下命令以启动控制台:
$ python3
导入我们的 pdb_example脚本名称和pdb模块。现在,我们将使用run()并且我们将字符串表达式作为参数传递给run()Python解释器本身:
student@ubuntu:~$ python3 Python 3.5.2 (default, Nov 23 2017, 16:37:01) [GCC 5.4.0 20160609] on linux Type "help", "copyright", "credits" or "license" for more information. >>> >>> import pdb_example >>> import pdb >>> pdb.run("pdb_example.Student(5).print_std()") > (1)() (Pdb)
要继续调试,请continue在(Pdb)提示符后输入并按Enter键。如果你想知道我们可以在这里使用的选项,那么在(Pdb)提示后按两次Tab 键。
现在,输入后continue,我们将获得如下输出:
student@ubuntu:~$ python3 Python 3.5.2 (default, Nov 23 2017, 16:37:01) [GCC 5.4.0 20160609] on linux Type "help", "copyright", "credits" or "license" for more information. >>> >>> import pdb_example >>> import pdb >>> pdb.run("pdb_example.Student(5).print_std()") > (1)() (Pdb) continue 0 1 2 3 4 >>>从命令行
运行调试器的最简单,最直接的方法是从命令行。我们的程序将作为调试器的输入。您可以从命令行使用调试器,如下所示:
$ python3 -m pdb pdb_example.py
从命令行运行调试器时,将加载源代码,它将停止在找到的第一行执行。输入continue以继续调试。这是输出:
student@ubuntu:~$ python3 -m pdb pdb_example.py > /home/student/pdb_example.py(1)() -> class Student: (Pdb) continue 0 1 2 3 4 The program finished and will be restarted > /home/student/pdb_example.py(1)() -> class Student: (Pdb)在Python脚本中
前两种技术将在Python程序开始时启动调试器。但这第三种技术最适合长期运行的流程。要在脚本中启动调试器,请使用set_trace()。
现在,修改您的pdb_example.py 文件,如下所示:
import pdb class Student: def __init__(self, std): self.count = std def print_std(self): for i in range(self.count): pdb.set_trace() print(i) return if __name__ == "__main__": Student(5).print_std()
现在,按如下方式运行程序:
student@ubuntu:~$ python3 pdb_example.py > /home/student/pdb_example.py(10)print_std() -> print(i) (Pdb) continue 0 > /home/student/pdb_example.py(9)print_std() -> pdb.set_trace() (Pdb)
set_trace() 是一个Python函数,因此您可以在程序中的任何位置调用它。
因此,这些是启动调试器的三种方式。
调试基本程序崩溃在本节中,我们将看到跟踪模块。跟踪模块有助于跟踪程序执行。因此,每当您的Python程序崩溃时,我们都可以理解崩溃的位置。我们可以通过将跟踪模块导入您的脚本以及命令行来使用它。
现在,我们将创建一个名为脚本trace_example.py并在脚本中编写以下内容:
class Student: def __init__(self, std): self.count = std def go(self): for i in range(self.count): print(i) return if __name__ == "__main__": Student(5).go()
输出如下:
student@ubuntu:~$ python3 -m trace --trace trace_example.py --- modulename: trace_example, funcname: trace_example.py(1): class Student: --- modulename: trace_example, funcname: Student trace_example.py(1): class Student: trace_example.py(2): def __init__(self, std): trace_example.py(5): def go(self): trace_example.py(10): if __name__ == "__main__": trace_example.py(11): Student(5).go() --- modulename: trace_example, funcname: init trace_example.py(3): self.count = std --- modulename: trace_example, funcname: go trace_example.py(6): for i in range(self.count): trace_example.py(7): print(i) 0 trace_example.py(6): for i in range(self.count): trace_example.py(7): print(i) 1 trace_example.py(6): for i in range(self.count): trace_example.py(7): print(i) 2 trace_example.py(6): for i in range(self.count): trace_example.py(7): print(i) 3 trace_example.py(6): for i in range(self.count): trace_example.py(7): print(i) 4
因此,通过trace --trace在命令行使用,开发人员可以逐行跟踪程序。因此,只要程序崩溃,开发人员就会知道崩溃的实例。
分析和计时程序分析Python程序意味着测量程序的执行时间。它衡量每个功能所花费的时间。Python的cProfile模块用于分析Python程序。
如前所述,分析意味着测量程序的执行时间。我们将使用cProfile Python模块来分析程序。
现在,我们将编写一个 cprof_example.py 脚本并在其中编写以下代码:
mul_value = 0 def mul_numbers( num1, num2 ): mul_value = num1 * num2; print ("Local Value: ", mul_value) return mul_value mul_numbers( 58, 77 ) print ("Global Value: ", mul_value)
运行程序,您将看到如下输出:
student@ubuntu:~$ python3 -m cProfile cprof_example.py Local Value: 4466 Global Value: 0 6 function calls in 0.000 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 1 0.000 0.000 0.000 0.000 cprof_example.py:1() 1 0.000 0.000 0.000 0.000 cprof_example.py:2(mul_numbers) 1 0.000 0.000 0.000 0.000 {built-in method builtins.exec} 2 0.000 0.000 0.000 0.000 {built-in method builtins.print} 1 0.000 0.000 0.000 0.000 {method "disable" of "_lsprof.Profiler" objects}
因此,使用时cProfile,所有被调用的函数都将打印出每个函数所花费的时间。现在,我们将看到这些列标题的含义:
· ncalls: 通话次数
· tottime: 在给定函数中花费的总时间
· percall:商数tottime除以ncalls
· cumtime:在此和所有方面花费的累计时间 subfunctions
· percall:cumtime除以原始调用的商数
· filename:lineno(function):提供每个功能的相应数据
timeit是一个Python模块,用于计算Python脚本的一小部分。您可以从命令行调用timeit,也可以将timeit模块导入到脚本中。我们将编写一个脚本来计算一段代码。创建一个timeit_example.py脚本并将以下内容写入其中:
import timeit prg_setup = "from math import sqrt" prg_code = """ def timeit_example(): list1 = [] for x in range(50): list1.append(sqrt(x)) """ # timeit statement print(timeit.timeit(setup = prg_setup, stmt = prg_code, number = 10000))
使用timeit,我们可以决定我们要测量的代码片段。因此,我们可以轻松定义设置代码以及我们要多带带执行测试的代码段。主代码运行100万次,这是默认时间,而设置代码只运行一次。
使程序运行得更快有多种方法可以使Python程序运行得更快,例如:
描述您的代码,以便识别瓶颈
使用内置函数和库,因此解释器不需要执行循环
避免使用全局变量,因为Python在访问全局变量时非常慢
使用现有包
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/43552.html
摘要:函数将单元格内容以形式呈现。自动评论代码自动注释单元格中的选定行,再次命中组合将取消注释相同的代码行。如果需要恢复整个已删除的单元格,请按或撤消删除单元格。 showImg(https://segmentfault.com/img/remote/1460000019599210); 编译:小七、蒋宝尚 一些小提示和小技巧可能是非常有用的,特别是在编程领域。有时候使用一点点黑客技术,既可...
摘要:你可以进行如下操作需要注意的是这个窍门只适用于。在中就不需要进行操作了,因为它已经默认进行了。这里有几个例子可以供你参考译文出处本文根据的所译,整个译文带有我自己的理解与思想,如果译得不好或有不对之处还请同行朋友指点。 枚举 不要这么做: i = 0 for item in iterable: print i, item i += 1 而是这样: for...
摘要:首先要打开微信,进入到指定的群聊,识别微信红包执行抢红包的动作。是一款基于控件识别的自动化测试框架,目前支持原生原生微信小程序,也可以在其他引擎中自行接入来使用。 showImg(https://segmentfault.com/img/remote/1460000019438856); 目录:0 引言1 环境2 需求分析3 前置准备4 抢红包流程回顾5 代码梳理6 后记 0 引言 提...
摘要:换句话说就是,让测试更有针对性。得益于强大的测试技术,兼容性测试的检出率远远高于业界水平。同时,在性能测试方面,即提供了项性能指标曲线性能分析,更提供了强大的内存泄漏和内存溢出的检测和分析能力。 摘要: Android兼容性测试旨在帮助解决Android应用在不同真机机型上的各类兼容性问题,包括 Crash/ANR分析、6项性能分析、UI检测、3个版本的覆盖安装检测等。Android兼...
摘要:简单介绍自带库,使用调试程序还是很方便的。比如下图就是展示断点进入到内部之后,打印的参数,打印某个变量退出调试,直接退出调试或者使用的方式退出最后说一句上面展示的使用调试的过程其实是很简单的,文章中主要通过截图展示运行的效果。 简单介绍 Python自带 Pdb库,使用 Pdb调试 Python程序还是很方便的。但是远程调试、多线程,Pdb是搞不定的 本文参考的相关文章如下: 《指针...
阅读 1994·2021-11-23 10:08
阅读 2325·2021-11-22 15:25
阅读 3268·2021-11-11 16:55
阅读 762·2021-11-04 16:05
阅读 2575·2021-09-10 10:51
阅读 703·2019-08-29 15:38
阅读 1572·2019-08-29 14:11
阅读 3479·2019-08-29 12:42