资讯专栏INFORMATION COLUMN

用Python学数学之Sympy代数符号运算

Jackwoo / 1161人阅读

摘要:的符号运算如果之前是学数学相关专业了解计算机代数系统,就会对数学符号的运算比较熟悉,而如果之前是程序员,可能会有点不太明白,下面我们就来了解一下。

在我们初、高中和大学近10年的学习时间里,数学一直占据着非常大的分量,但是回忆过去可以发现,我们把大量的时间都花在反复解题、不断运算上,计算方法、运算技巧、笔算能力以及数学公式的记忆仿佛成了我们学习数学的全部。这些记忆和技巧没几年就忘掉了,但很多人甚至还记得那份阴影;笔算与解题在AI、图形图像、数据分析等上被软件所取代。那我们学生时代的数学还剩下什么呢?
计算器与数学

说起数学计算器,我们常见的是加减乘除四则运算,有了它,我们就可以摆脱笔算和心算的痛苦。四位数以上的加减乘除在数学的原理上其实并不难,但是如果不借助于计算器,光依赖我们的运算能力(笔算和心算),不仅运算的准确度大打折扣,而且还会让我们对数学的运用停留在一个非常浅的层次。

尽管四则运算如此简单,但是多位数运算的心算却在我们生活中被归为天才般的能力。但是数学的应用应该生活化、普及化,而不是只属于天才的专利,计算器改变了这一切,这就是计算器的魅力。
计算器还可以做科学运算,比如乘方、开方、指数、对数、三角函数等,尽管这些知识在我们初中时代,通过纸笔也是能运算起来的,但是也仅限于一些极其常用和简单的运算,一旦复杂起来,通过纸笔来运算就是一项复杂的工程了。所以说,计算器可以让我们离数学的应用更近

但是我们学生时代所学的数学可远不止这些,尤其是高等数学(微积分)、线性代数、概率统计等数学知识应用非常广泛(我也是后来才知道),但是由于他们的运算非常复杂,我们即便掌握了这些知识,想要应用它又谈何容易,那有没有微积分、线性代数、概率统计等的计算器呢?

答案是有的,它们就是计算机代数系统Computer Algebra System,简称CAS,Python的Sympy库也支持带有数学符号的微积分、线性代数等进行运算。

有了计算器,我们才能真正脱离数学复杂的解题本身,把精力花在对数学原理和应用的学习上,而这才是(在工作方面)数学学习的意义。
计算机代数系统

Sympy可以实现数学符号的运算,用它来进行数学表达式的符号推导和验算,处理带有数学符号的导数、极限、微积分、方程组、矩阵等,就像科学计算器一样简单,类似于计算机代数系统CAS,虽然CAS通常是可视化软件,但是维基百科上也把Sympy归为CAS。

几大知名的数学软件比如MathematicaMaximaMatlab(需Symbolic Math Toolbox)Maple等都可以做符号运算,在上篇文章中我们已经拿Python和R、Matlab对比了,显然Python在指定场景下确实优势非常明显,于是我又调研了一下Sympy与Mathematica的比较,在输入公式以及生成图表方面,Sympy确实不行(这一点Python有其他库来弥补),Mathematica能够做什么,Sympy基本也能做什么。

所以说Python在专业数学(数学、数据科学等)领域,由于其拥有非常多而且强大的第三方库,构成了一个极其完善的生态链,即使是面对世界上最为强势最为硬核的软件也是丝毫不虚的。

本专栏用Python学数学的下一期也会介绍一些非常实用的数学工具和数学教材资源,让数学的学习更简单更生动。
Sympy的符号运算

如果之前是学数学相关专业了解计算机代数系统CAS,就会对数学符号的运算比较熟悉,而如果之前是程序员,可能会有点不太明白,下面我们就来了解一下。

Sympy与Math函数的区别

我们先来看一下Sympy库和Python内置的Math函数对数值计算的处理有什么不同。为了让代码可执行,下面的代码都是基于Python3的完整代码。

import sympy,math
print(math.sqrt(8))
print(sympy.sqrt(8))

执行之后,结果显示为:

2.8284271247461903
2*sqrt(2)

math模块是直接求解出一个浮点值,而Sympy则是用数学符号表示出结果,结合LaTex的语法就可以得出我们在课本里最熟悉的的:$2sqrt{2}$。

数学符号与表达式

我们要对数学方程组、微积分等进行运算时,就会遇到变量比如x,y,z,f等的问题,也会遇到求导、积分等代数符号表达式,而Sympy就可以保留变量,计算有代数符号的表达式的。

from sympy import *
x = Symbol("x")
y = Symbol("y")
k, m, n = symbols("k m n")
print(3*x+y**3)

输出的结果为:3*x + y**3,转化为LaTex表示法之后结果为$3x+y^3$,输出的结果就带有x和y变量。Symbol()函数定义单个数学符号;symbols()函数定义多个数学符号。

折叠与展开表达式

factor()函数可以折叠表达式,而expand()函数可以展开表达式,比如表达式:$x^4+xy+8x$,折叠之后应该是$x(x^3+y+8)$。我们来看具体的代码:

from sympy import *
x,y = symbols("x y")
expr=x**4+x*y+8*x
f_expr=factor(expr)
e_expr=expand(f_expr)
print(f_expr)
print(e_expr)

表达式的折叠与展开,对应的数学知识就是因式分解,相关的数学知识在人教版初二的教程里。用Python学习数学专栏的目的就是要Python与初高中、大学的数学学习结合起来,让数学变得更加简单生动。

表达式化简

simplify()函数可以对表达式进行化简。有一些表达式看起来会比较复杂,就拿人教版初二上的一道多项式的乘法为例,简化$(2x)^3(-5xy^2)$。

from sympy import *
x,y = symbols("x y")
expr=(2*x)**3*(-5*x*y**2)
s_expr=simplify(expr)
print(s_expr)
求解方程组

在人教版的数学教材里,我们初一上会接触一元一次方程组,初一下就会接触二元一次方程、三元一次方程组,在初三上会接触到一元二次方程,使用Sympy的solve()函数就能轻松解题。

解一元一次方程

我们来求解这个一元一次方程组。(题目来源于人教版七年级数学上)
$$6 imes x + 6 imes(x-2000)=150000$$

from sympy import *
x = Symbol("x")
print(solve(6*x + 6*(x-2000)-150000,x))

我们需要掌握Python的代码符号和数学符号之间的对应关系,解一元一次方程就非常简单。

解二元一次方程组

我们来看如何求解二元一次方程组。(题目来自人教版七年级数学下)

$$ egin{cases} x+ y =10, 2 imes x+ y=16 end{cases} $$

from sympy import *
x,y = symbols("x y")
print(solve([x + y-10,2*x+y-16],[x,y]))

很快就可以得出{x: 6, y: 4},也就是
$$x=6,y=4$$。

解三元一次方程组

我们来看如何解三元一次方程组。(题目来自人教版七年级数学下)

$$ egin{cases} x+y+z=12, x+2y+5z=22, x=4y. end{cases} $$

执行之后,很快可以得出结果{x: 8, y: 2, z: 2},也就是
$$x=8,y=2,z=2$$

解一元二次方程组

比如我们来求解人教版九年级一元二次方程组比较经典的一个题目,$ax^2+bx+c=0$.

from sympy import *
x,y = symbols("x y")
a,b,c=symbols("a b c")
expr=a*x**2 + b*x + c
s_expr=solve( expr, x)
print(s_expr)

执行之后得出的结果为[(-b + sqrt(-4*a*c + b**2))/(2*a), -(b + sqrt(-4*a*c + b**2))/(2*a)],我们知道根与系数的关系二次方程会有两个解,这里的格式就是一个列表。转为我们常见的数学公式即为:
$$frac{-b+sqrt{-4ac+b^2}}{2a} 、-frac{b+sqrt{-4ac+b^2}}{2a}$$

微积分Calculus

微积分是大学高等数学里非常重要的学习内容,比如求极限、导数、微分、不定积分、定积分等都是可以使用Sympy来运算的。
求极限
Sympy是使用limit(表达式,变量,极限值)函数来求极限的,比如我们要求$lim limits_{x o 0} frac{sinx(x)}{x}$的值。

from sympy import *
x, y, z = symbols("x y z")
expr = sin(x)/x
l_expr=limit(expr, x, 0)
print(l_expr)

执行后即可得到结果为1。

求导

可以使用diff(表达式,变量,求导的次数)函数对表达式求导,比如我们要对$sin(x)e^x$进行$x$求导,以及求导两次,代码如下:

from sympy import *
x,y = symbols("x y")
expr=sin(x)*exp(x)
diff_expr=diff(expr, x)
diff_expr2=diff(expr,x,2)
print(diff_expr)
print(diff_expr2)

求导一次的结果就是exp(x)*sin(x) + exp(x)*cos(x),也就是$e^xsin(x)+e^xcos(x)$;求导两次的结果是2*exp(x)*cos(x),也就是
$$2e^xcosx$$

求不定积分

Sympy是使用integrate(表达式,变量)来求不定积分的,比如我们要求$int(e^xsin{(x)} + e^xcos{(x)}),dx$

from sympy import *
x,y = symbols("x y")
expr=exp(x)*sin(x) + exp(x)*cos(x)
i_expr=integrate(expr,x)
print(i_expr)

执行之后的结果为:exp(x)*sin(x) 转化之后为:
$$e^xsin(x)$$

求定积分

Sympy同样是使用integrate()函数来做定积分的求解,只是语法不同:integrate(表达式,(变量,下区间,上区间)),我们来看如果求解
$int_{-infty}^infty sin{(x^2)},dx$

from sympy import *
x,y = symbols("x y")
expr=sin(x**2)
i_expr=integrate(expr, (x, -oo, oo))
print(i_expr)

执行之后的结果为sqrt(2)*sqrt(pi)/2,也就是
$$frac{sqrt{2}sqrt{pi}}{2}$$

Sympy能够做的也远不止这些,初高中、大学的数学运算题在Sympy极为丰富的功能里不过只是开胃入门小菜而已。

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/43468.html

相关文章

  • Python有机结合及统计、微积分、线性代数相关资源、图形软件

    摘要:微积分微积分的课程我们也同样是推荐和的课程。还有一个斯坦福大学的统计学习入门英文字幕相当不错。所以,除了绘制数学图形外,学习数学就应该完全与编程有机结合。 无论是三大数学软件Matlab(通信、控制等工程例外)、Maple、Mathematica,还是三大统计软件Spass、Stata、SAS,这些可视化的软件本身就是编程的一个体现,它们在一定程度上降低了我们使用数学的门槛,但另一方面...

    Java3y 评论0 收藏0
  • Python相关教程、开源包推荐与下载

    摘要:在上篇文章里,为大家推荐了一些数学学习的软件和微积分线性代数概率统计的学习视频,今天再推荐一些精心挑选的经典教材,并为大家提供电子书的下载链接,和视频搭配起来一起学习,效果会更好。我们要使用的以及等都包含在里面,无需额外下载。 在上篇文章里,为大家推荐了一些数学学习的软件和微积分、线性代数、概率统计的学习视频,今天再推荐一些精心挑选的经典教材,并为大家提供电子书的下载链接,和视频搭配起...

    wapeyang 评论0 收藏0
  • 机器习数基础线代篇——线性代数python手册(建议收藏)

    摘要:提到线性代数,又不得不吐槽国内教材了,学起来真的是实力劝退。线性代数概念较多,计划在另一篇总结基本概念,这里仅总结线性代数里一些重要概念的程序。 提到线性代数,又不...

    andot 评论0 收藏0
  • 实现一个【伪】四则运算封闭的符号运算和求解

    摘要:最后实现的符号运算,符号与实数对四则运算封闭,符号与符号对加减封闭多么偷懒啊哈哈哈哈原谅我没文化上,知道了的通过单元测试要实现方法。 最后的效果: if __name__ == __main__: import doctest doctest.testmod() x = Symbols(x) print(x * 2 + 1 == 8.0 * x + 6)...

    bang590 评论0 收藏0
  • Python开发指南 托管Hadoop集群 UHadoop

    摘要:开发指南开发指南开发指南如果使用进行机器学习方面的数据分析,需要在集群上安装一些依赖包。以版本为例,安装方法如下是一款专为科学和工程设计的工具包。以版本为例,安装方法如下是下,专门面向机器学习的工具包。 developer/pythondev.mdPython开发指南如果使用pyspark进行机器学习方面的数据分析,需要在集群上安装一些python依赖包。这里将介绍常用的几个依赖包的安装方法...

    ernest.wang 评论0 收藏2969

发表评论

0条评论

最新活动
阅读需要支付1元查看
<