摘要:选择多行通过一个会通过索引对行进行切片,由于前面设置了索引为日期格式,所以可以方便的直接使用日期范围进行筛选。选择指定行列的数据同,代表全部。按季度划分,每个月开始为频率一中下一个月的早上点。
背景
在数据分析中pandas举足轻重,学习pandas最好的方法就是看官方文档,以下是根据官方文档10 Minutes to pandas学习记录。(官方标题10分钟,感觉起码得半个小时吧)
在pandas中主要有两种数据类型,可以简单的理解为:
Series:一维数组
DateFrame:二维数组(矩阵)
有了大概的概念之后,开始正式认识pandas:
首先要引入对应的包:
import numpy as np import pandas as pd新建对象 Object Creation
Series
可以通过传入一个list对象来新建Series,其中空值为np.nan:
s = pd.Series([1,3,4,np.nan,7,9]) s Out[5]: 0 1.0 1 3.0 2 4.0 3 NaN 4 7.0 5 9.0 dtype: float64
pandas会默认创建一列索引index(上面的0-5)。我们也可以在创建时就指定索引:
pd.Series([1,3,4,np.nan,7,9], index=[1,1,2,2,"a",4]) Out[9]: 1 1.0 1 3.0 2 4.0 2 NaN a 7.0 4 9.0 dtype: float64
要注意的是,索引是可以重复的,也可以是字符。
DataFrame
新建一个DataFrame对象可以有多种方式:
通过传入一个numpy的数组、指定一个时间的索引以及一个列名。
dates = pd.date_range("20190101", periods=6) dates Out[11]: DatetimeIndex(["2019-01-01", "2019-01-02", "2019-01-03", "2019-01-04", "2019-01-05", "2019-01-06"], dtype="datetime64[ns]", freq="D") df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list("ABCD")) df Out[18]: A B C D 2019-01-01 0.671622 0.785726 0.392435 0.874692 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 2019-01-06 0.221597 -0.753038 -1.741256 0.287280
通过传入一个dict对象
df2 = pd.DataFrame({"A":1., "B":pd.Timestamp("20190101"), "C":pd.Series(1, index=list(range(4)), dtype="float32"), "D":np.array([3]*4, dtype="int32"), "E":pd.Categorical(["test", "tain", "test", "train"]), "F":"foo"}) df2 Out[27]: A B C D E F 0 1.0 2019-01-01 1.0 3 test foo 1 1.0 2019-01-01 1.0 3 tain foo 2 1.0 2019-01-01 1.0 3 test foo 3 1.0 2019-01-01 1.0 3 train foo
这里我们指定了不同的类型,可以通过如下查看:
df2.dtypes Out[28]: A float64 B datetime64[ns] C float32 D int32 E category F object dtype: object
可以看出DataFrame和Series一样,在没有指定索引时,会自动生成一个数字的索引,这在后续的操作中十分重要。
查看 Viewing Data
查看开头几行或者末尾几行:
df.head() Out[30]: A B C D 2019-01-01 0.671622 0.785726 0.392435 0.874692 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 df.tail(3) Out[31]: A B C D 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 2019-01-06 0.221597 -0.753038 -1.741256 0.287280
可以通过添加行数参数来输出,默认为输出5行。
查看索引和列名
df.index Out[32]: DatetimeIndex(["2019-01-01", "2019-01-02", "2019-01-03", "2019-01-04", "2019-01-05", "2019-01-06"], dtype="datetime64[ns]", freq="D") df.columns Out[33]: Index(["A", "B", "C", "D"], dtype="object")
使用DataFrame.to_numpy()转化为numpy数据。需要注意的是由于numpy array类型数据只可包含一种格式,而DataFrame类型数据可包含多种格式,所以在转换过程中,pandas会找到一种可以处理DateFrame中国所有格式的numpy array格式,比如object。这个过程会耗费一定的计算量。
df.to_numpy() Out[35]: array([[ 0.67162219, 0.78572584, 0.39243527, 0.87469243], [-2.42070338, -1.11620768, -0.34607048, 0.78594081], [ 1.36442543, -0.94764138, 2.38688005, 0.58537186], [-0.48597971, -1.28145415, 0.35406263, -1.41885798], [-1.12271697, -2.78904135, -0.79181242, -0.17434484], [ 0.22159737, -0.75303807, -1.74125564, 0.28728004]]) df2.to_numpy() Out[36]: array([[1.0, Timestamp("2019-01-01 00:00:00"), 1.0, 3, "test", "foo"], [1.0, Timestamp("2019-01-01 00:00:00"), 1.0, 3, "tain", "foo"], [1.0, Timestamp("2019-01-01 00:00:00"), 1.0, 3, "test", "foo"], [1.0, Timestamp("2019-01-01 00:00:00"), 1.0, 3, "train", "foo"]], dtype=object)
上面df全部为float类型,所以转换会很快,而df2涉及多种类型转换,最后全部变成了object类型元素。
查看数据的简要统计结果
df.describe() Out[37]: A B C D count 6.000000 6.000000 6.000000 6.000000 mean -0.295293 -1.016943 0.042373 0.156680 std 1.356107 1.144047 1.396030 0.860725 min -2.420703 -2.789041 -1.741256 -1.418858 25% -0.963533 -1.240143 -0.680377 -0.058939 50% -0.132191 -1.031925 0.003996 0.436326 75% 0.559116 -0.801689 0.382842 0.735799 max 1.364425 0.785726 2.386880 0.874692
转置
df.T Out[38]: 2019-01-01 2019-01-02 2019-01-03 2019-01-04 2019-01-05 2019-01-06 A 0.671622 -2.420703 1.364425 -0.485980 -1.122717 0.221597 B 0.785726 -1.116208 -0.947641 -1.281454 -2.789041 -0.753038 C 0.392435 -0.346070 2.386880 0.354063 -0.791812 -1.741256 D 0.874692 0.785941 0.585372 -1.418858 -0.174345 0.287280
按坐标轴排序,其中axis参数为坐标轴,axis默认为0,即横轴(对行排序),axis=1则为纵轴(对列排序);asceding参数默认为True,即升序排序,ascending=False则为降序排序:
df.sort_index(axis=1) Out[44]: A B C D 2019-01-01 0.671622 0.785726 0.392435 0.874692 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 2019-01-06 0.221597 -0.753038 -1.741256 0.287280 df.sort_index(axis=1, ascending=False) Out[45]: D C B A 2019-01-01 0.874692 0.392435 0.785726 0.671622 2019-01-02 0.785941 -0.346070 -1.116208 -2.420703 2019-01-03 0.585372 2.386880 -0.947641 1.364425 2019-01-04 -1.418858 0.354063 -1.281454 -0.485980 2019-01-05 -0.174345 -0.791812 -2.789041 -1.122717 2019-01-06 0.287280 -1.741256 -0.753038 0.221597
可见df.sort_index(axis=1)是按列名升序排序,所以看起来没有变化,当设置ascending=False时,列顺序变成了DCBA。
按数值排序:
df.sort_values(by="B") Out[46]: A B C D 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2019-01-06 0.221597 -0.753038 -1.741256 0.287280 2019-01-01 0.671622 0.785726 0.392435 0.874692 df.sort_values(by="B", ascending=False) Out[47]: A B C D 2019-01-01 0.671622 0.785726 0.392435 0.874692 2019-01-06 0.221597 -0.753038 -1.741256 0.287280 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345筛选 Selection
获取某列
df["A"] Out[49]: 2019-01-01 0.671622 2019-01-02 -2.420703 2019-01-03 1.364425 2019-01-04 -0.485980 2019-01-05 -1.122717 2019-01-06 0.221597 Freq: D, Name: A, dtype: float64 type(df.A) Out[52]: pandas.core.series.Series
也可直接用df.A,注意这里是大小写敏感的,这时候获取的是一个Series类型数据。
选择多行
df[0:3] Out[53]: A B C D 2019-01-01 0.671622 0.785726 0.392435 0.874692 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 2019-01-03 1.364425 -0.947641 2.386880 0.585372 df["20190102":"20190104"] Out[54]: A B C D 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858
通过一个[]会通过索引对行进行切片,由于前面设置了索引为日期格式,所以可以方便的直接使用日期范围进行筛选。
通过标签选择
选择某行
df.loc[dates[0]] Out[57]: A 0.671622 B 0.785726 C 0.392435 D 0.874692 Name: 2019-01-01 00:00:00, dtype: float64
选择指定行列的数据
df.loc[:, ("A", "C")] Out[58]: A C 2019-01-01 0.671622 0.392435 2019-01-02 -2.420703 -0.346070 2019-01-03 1.364425 2.386880 2019-01-04 -0.485980 0.354063 2019-01-05 -1.122717 -0.791812 2019-01-06 0.221597 -1.741256 df.loc["20190102":"20190105", ("A", "C")] Out[62]: A C 2019-01-02 -2.420703 -0.346070 2019-01-03 1.364425 2.386880 2019-01-04 -0.485980 0.354063 2019-01-05 -1.122717 -0.791812
传入第一个参数是行索引标签范围,第二个是列索引标签,:代表全部。
选定某值
df.loc["20190102", "A"] Out[69]: -2.420703380445092 df.at[dates[1], "A"] Out[70]: -2.420703380445092
可以通过loc[]和at[]两种方式来获取某值,但需要注意的是,由于行索引为datetime类型,使用loc[]方式获取时,可直接使用20190102字符串来代替,而在at[]中,必须传入datetime类型,否则会有报错:
df.at["20190102", "A"] File "pandas/_libs/index.pyx", line 81, in pandas._libs.index.IndexEngine.get_value File "pandas/_libs/index.pyx", line 89, in pandas._libs.index.IndexEngine.get_value File "pandas/_libs/index.pyx", line 449, in pandas._libs.index.DatetimeEngine.get_loc File "pandas/_libs/index.pyx", line 455, in pandas._libs.index.DatetimeEngine._date_check_type KeyError: "20190102"
通过位置选择
选择某行
df.iloc[3] Out[71]: A -0.485980 B -1.281454 C 0.354063 D -1.418858 Name: 2019-01-04 00:00:00, dtype: float64
iloc[]方法的参数,必须是数值。
选择指定行列的数据
df.iloc[3:5, 0:2] Out[72]: A B 2019-01-04 -0.485980 -1.281454 2019-01-05 -1.122717 -2.789041 df.iloc[:,:] Out[73]: A B C D 2019-01-01 0.671622 0.785726 0.392435 0.874692 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 2019-01-06 0.221597 -0.753038 -1.741256 0.287280 df.iloc[[1, 2, 4], [0, 2]] Out[74]: A C 2019-01-02 -2.420703 -0.346070 2019-01-03 1.364425 2.386880 2019-01-05 -1.122717 -0.791812
同loc[],:代表全部。
选择某值
df.iloc[1, 1] Out[75]: -1.1162076820700824 df.iat[1, 1] Out[76]: -1.1162076820700824
可以通过iloc[]和iat[]两种方法获取数值。
按条件判断选择
按某列的数值判断选择
df[df.A > 0] Out[77]: A B C D 2019-01-01 0.671622 0.785726 0.392435 0.874692 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2019-01-06 0.221597 -0.753038 -1.741256 0.287280
筛选出符合要求的数据
df[df > 0] Out[78]: A B C D 2019-01-01 0.671622 0.785726 0.392435 0.874692 2019-01-02 NaN NaN NaN 0.785941 2019-01-03 1.364425 NaN 2.386880 0.585372 2019-01-04 NaN NaN 0.354063 NaN 2019-01-05 NaN NaN NaN NaN 2019-01-06 0.221597 NaN NaN 0.287280
不符合要求的数据均会被赋值为空NaN。
使用isin()方法筛选
df2 = df.copy() df2["E"] = ["one", "one", "two", "three", "four", "three"] df2 Out[88]: A B C D E 2019-01-01 0.671622 0.785726 0.392435 0.874692 one 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 one 2019-01-03 1.364425 -0.947641 2.386880 0.585372 two 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 three 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 four 2019-01-06 0.221597 -0.753038 -1.741256 0.287280 three df2["E"].isin(["two", "four"]) Out[89]: 2019-01-01 False 2019-01-02 False 2019-01-03 True 2019-01-04 False 2019-01-05 True 2019-01-06 False Freq: D, Name: E, dtype: bool df2[df2["E"].isin(["two", "four"])] Out[90]: A B C D E 2019-01-03 1.364425 -0.947641 2.386880 0.585372 two 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 four
注意:isin必须严格一致才行,df中的默认数值小数点位数很长,并非显示的5位,为了方便展示,所以新增了E列。直接用原数值,情况如下,可看出[1,1]位置符合要求。
df.isin([-1.1162076820700824]) Out[95]: A B C D 2019-01-01 False False False False 2019-01-02 False True False False 2019-01-03 False False False False 2019-01-04 False False False False 2019-01-05 False False False False 2019-01-06 False False False False
设定值
通过指定索引设定列
s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range("20190102", periods=6)) s1 Out[98]: 2019-01-02 1 2019-01-03 2 2019-01-04 3 2019-01-05 4 2019-01-06 5 2019-01-07 6 Freq: D, dtype: int64 df["F"]=s1 df Out[101]: A B C D F 2019-01-01 0.671622 0.785726 0.392435 0.874692 NaN 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 1.0 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2.0 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 3.0 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 4.0 2019-01-06 0.221597 -0.753038 -1.741256 0.287280 5.0
空值会自动填充为NaN。
通过标签设定值
df.at[dates[0], "A"] = 0 df Out[103]: A B C D F 2019-01-01 0.000000 0.785726 0.392435 0.874692 NaN 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 1.0 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2.0 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 3.0 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 4.0 2019-01-06 0.221597 -0.753038 -1.741256 0.287280 5.0
通过为止设定值
df.iat[0, 1] = 0 df Out[105]: A B C D F 2019-01-01 0.000000 0.000000 0.392435 0.874692 NaN 2019-01-02 -2.420703 -1.116208 -0.346070 0.785941 1.0 2019-01-03 1.364425 -0.947641 2.386880 0.585372 2.0 2019-01-04 -0.485980 -1.281454 0.354063 -1.418858 3.0 2019-01-05 -1.122717 -2.789041 -0.791812 -0.174345 4.0 2019-01-06 0.221597 -0.753038 -1.741256 0.287280 5.0
通过NumPy array设定值
df.loc[:, "D"] = np.array([5] * len(df)) df Out[109]: A B C D F 2019-01-01 0.000000 0.000000 0.392435 5 NaN 2019-01-02 -2.420703 -1.116208 -0.346070 5 1.0 2019-01-03 1.364425 -0.947641 2.386880 5 2.0 2019-01-04 -0.485980 -1.281454 0.354063 5 3.0 2019-01-05 -1.122717 -2.789041 -0.791812 5 4.0 2019-01-06 0.221597 -0.753038 -1.741256 5 5.0
通过条件判断设定值
df2 = df.copy() df2[df2 > 0] = -df2 df2 Out[112]: A B C D F 2019-01-01 0.000000 0.000000 -0.392435 -5 NaN 2019-01-02 -2.420703 -1.116208 -0.346070 -5 -1.0 2019-01-03 -1.364425 -0.947641 -2.386880 -5 -2.0 2019-01-04 -0.485980 -1.281454 -0.354063 -5 -3.0 2019-01-05 -1.122717 -2.789041 -0.791812 -5 -4.0 2019-01-06 -0.221597 -0.753038 -1.741256 -5 -5.0空值处理 Missing Data
pandas默认使用np.nan来表示空值,在统计计算中会直接忽略。
通过reindex()方法可以新增、修改、删除某坐标轴(行或列)的索引,并返回一个数据的拷贝:
df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ["E"]) df1.loc[dates[0]:dates[1], "E"] = 1 df1 Out[115]: A B C D F E 2019-01-01 0.000000 0.000000 0.392435 5 NaN 1.0 2019-01-02 -2.420703 -1.116208 -0.346070 5 1.0 1.0 2019-01-03 1.364425 -0.947641 2.386880 5 2.0 NaN 2019-01-04 -0.485980 -1.281454 0.354063 5 3.0 NaN
删除空值
df1.dropna(how="any") Out[116]: A B C D F E 2019-01-02 -2.420703 -1.116208 -0.34607 5 1.0 1.0
填充空值
df1.fillna(value=5) Out[117]: A B C D F E 2019-01-01 0.000000 0.000000 0.392435 5 5.0 1.0 2019-01-02 -2.420703 -1.116208 -0.346070 5 1.0 1.0 2019-01-03 1.364425 -0.947641 2.386880 5 2.0 5.0 2019-01-04 -0.485980 -1.281454 0.354063 5 3.0 5.0
判断是否为空值
pd.isna(df1) Out[118]: A B C D F E 2019-01-01 False False False False True False 2019-01-02 False False False False False False 2019-01-03 False False False False False True 2019-01-04 False False False False False True运算 Operations
统计
注意 所有的统计默认是不包含空值的
平均值
默认情况是按列求平均值:
df.mean() Out[119]: A -0.407230 B -1.147897 C 0.042373 D 5.000000 F 3.000000 dtype: float64
如果需要按行求平均值,需指定轴参数:
df.mean(1) Out[120]: 2019-01-01 1.348109 2019-01-02 0.423404 2019-01-03 1.960733 2019-01-04 1.317326 2019-01-05 0.859286 2019-01-06 1.545461 Freq: D, dtype: float64
数值移动
s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates) s Out[122]: 2019-01-01 1.0 2019-01-02 3.0 2019-01-03 5.0 2019-01-04 NaN 2019-01-05 6.0 2019-01-06 8.0 Freq: D, dtype: float64 s = s.shift(2) s Out[125]: 2019-01-01 NaN 2019-01-02 NaN 2019-01-03 1.0 2019-01-04 3.0 2019-01-05 5.0 2019-01-06 NaN Freq: D, dtype: float64
这里将s的值移动两个,那么空出的部分会自动使用NaN填充。
不同维度间的运算,pandas会自动扩展维度:
df.sub(s, axis="index") Out[128]: A B C D F 2019-01-01 NaN NaN NaN NaN NaN 2019-01-02 NaN NaN NaN NaN NaN 2019-01-03 0.364425 -1.947641 1.386880 4.0 1.0 2019-01-04 -3.485980 -4.281454 -2.645937 2.0 0.0 2019-01-05 -6.122717 -7.789041 -5.791812 0.0 -1.0 2019-01-06 NaN NaN NaN NaN NaN
应用
通过apply()方法,可以对数据进行逐一操作:
累计求和
df.apply(np.cumsum) Out[130]: A B C D F 2019-01-01 0.000000 0.000000 0.392435 5 NaN 2019-01-02 -2.420703 -1.116208 0.046365 10 1.0 2019-01-03 -1.056278 -2.063849 2.433245 15 3.0 2019-01-04 -1.542258 -3.345303 2.787307 20 6.0 2019-01-05 -2.664975 -6.134345 1.995495 25 10.0 2019-01-06 -2.443377 -6.887383 0.254239 30 15.0
这里使用了apply()方法调用np.cumsum方法,也可直接使用df.cumsum():
df.cumsum() Out[133]: A B C D F 2019-01-01 0.000000 0.000000 0.392435 5.0 NaN 2019-01-02 -2.420703 -1.116208 0.046365 10.0 1.0 2019-01-03 -1.056278 -2.063849 2.433245 15.0 3.0 2019-01-04 -1.542258 -3.345303 2.787307 20.0 6.0 2019-01-05 -2.664975 -6.134345 1.995495 25.0 10.0 2019-01-06 -2.443377 -6.887383 0.254239 30.0 15.0
自定义方法
通过自定义函数,配合apply()方法,可以实现更多数据处理:
df.apply(lambda x: x.max() - x.min()) Out[134]: A 3.785129 B 2.789041 C 4.128136 D 0.000000 F 4.000000 dtype: float64
矩阵
统计矩阵中每个元素出现的频次:
s = pd.Series(np.random.randint(0, 7, size=10)) s Out[136]: 0 2 1 0 2 4 3 0 4 3 5 3 6 6 7 4 8 6 9 5 dtype: int64 s.value_counts() Out[137]: 6 2 4 2 3 2 0 2 5 1 2 1 dtype: int64
String方法
所有的Series类型都可以直接调用str的属性方法来对每个对象进行操作。
比如转换成大写:
s = pd.Series(["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"]) s.str.upper() Out[139]: 0 A 1 B 2 C 3 AABA 4 BACA 5 NaN 6 CABA 7 DOG 8 CAT dtype: object
分列:
s = pd.Series(["A,b", "c,d"]) s Out[142]: 0 A,b 1 c,d dtype: object s.str.split(",", expand=True) Out[143]: 0 1 0 A b 1 c d
其他方法:
dir(str) Out[140]: ["capitalize", "casefold", "center", "count", "encode", "endswith", "expandtabs", "find", "format", "format_map", "index", "isalnum", "isalpha", "isascii", "isdecimal", "isdigit", "isidentifier", "islower", "isnumeric", "isprintable", "isspace", "istitle", "isupper", "join", "ljust", "lower", "lstrip", "maketrans", "partition", "replace", "rfind", "rindex", "rjust", "rpartition", "rsplit", "rstrip", "split", "splitlines", "startswith", "strip", "swapcase", "title", "translate", "upper", "zfill"]合并 Merge
pandas`可以提供很多方法可以快速的合并各种类型的Series、DataFrame以及Panel Object。
Concat方法
df = pd.DataFrame(np.random.randn(10, 4)) df Out[145]: 0 1 2 3 0 -0.227408 -0.185674 -0.187919 0.185685 1 1.132517 -0.539992 1.156631 -0.022468 2 0.214134 -1.283055 -0.862972 0.518942 3 0.785903 1.033915 -0.471496 -1.403762 4 -0.676717 -0.529971 -1.161988 -1.265071 5 0.670126 1.320960 -0.128098 0.718631 6 0.589902 0.349386 0.221955 1.749188 7 -0.328885 0.607929 -0.973610 -0.928472 8 1.724243 -0.661503 -0.374254 0.409250 9 1.346625 0.618285 0.528776 -0.628470 # break it into pieces pieces = [df[:3], df[3:7], df[7:]] pieces Out[147]: [ 0 1 2 3 0 -0.227408 -0.185674 -0.187919 0.185685 1 1.132517 -0.539992 1.156631 -0.022468 2 0.214134 -1.283055 -0.862972 0.518942, 0 1 2 3 3 0.785903 1.033915 -0.471496 -1.403762 4 -0.676717 -0.529971 -1.161988 -1.265071 5 0.670126 1.320960 -0.128098 0.718631 6 0.589902 0.349386 0.221955 1.749188, 0 1 2 3 7 -0.328885 0.607929 -0.973610 -0.928472 8 1.724243 -0.661503 -0.374254 0.409250 9 1.346625 0.618285 0.528776 -0.628470] pd.concat(pieces) Out[148]: 0 1 2 3 0 -0.227408 -0.185674 -0.187919 0.185685 1 1.132517 -0.539992 1.156631 -0.022468 2 0.214134 -1.283055 -0.862972 0.518942 3 0.785903 1.033915 -0.471496 -1.403762 4 -0.676717 -0.529971 -1.161988 -1.265071 5 0.670126 1.320960 -0.128098 0.718631 6 0.589902 0.349386 0.221955 1.749188 7 -0.328885 0.607929 -0.973610 -0.928472 8 1.724243 -0.661503 -0.374254 0.409250 9 1.346625 0.618285 0.528776 -0.628470
Merge方法
这是类似sql的合并方法:
left = pd.DataFrame({"key": ["foo", "foo"], "lval": [1, 2]}) right = pd.DataFrame({"key": ["foo", "foo"], "rval": [4, 5]}) left Out[151]: key lval 0 foo 1 1 foo 2 right Out[152]: key rval 0 foo 4 1 foo 5 pd.merge(left, right, on="key") Out[153]: key lval rval 0 foo 1 4 1 foo 1 5 2 foo 2 4 3 foo 2 5
另一个例子:
left = pd.DataFrame({"key": ["foo", "bar"], "lval": [1, 2]}) right = pd.DataFrame({"key": ["foo", "bar"], "rval": [4, 5]}) left Out[156]: key lval 0 foo 1 1 bar 2 right Out[157]: key rval 0 foo 4 1 bar 5 pd.merge(left, right, on="key") Out[158]: key lval rval 0 foo 1 4 1 bar 2 5
Append方法
在DataFrame中增加行
df = pd.DataFrame(np.random.randn(8, 4), columns=["A", "B", "C", "D"]) df Out[160]: A B C D 0 -0.496709 0.573449 0.076059 0.685285 1 0.479253 0.587376 -1.240070 -0.907910 2 -0.052609 -0.287786 -1.949402 1.163323 3 -0.659489 0.525583 0.820922 -1.368544 4 1.270453 -1.813249 0.059915 0.586703 5 1.859657 0.564274 -0.198763 -1.794173 6 -0.649153 -3.129258 0.063418 -0.727936 7 0.862402 -0.800031 -1.954784 -0.028607 s = df.iloc[3] s Out[162]: A -0.659489 B 0.525583 C 0.820922 D -1.368544 Name: 3, dtype: float64 df.append(s, ignore_index=True) Out[163]: A B C D 0 -0.496709 0.573449 0.076059 0.685285 1 0.479253 0.587376 -1.240070 -0.907910 2 -0.052609 -0.287786 -1.949402 1.163323 3 -0.659489 0.525583 0.820922 -1.368544 4 1.270453 -1.813249 0.059915 0.586703 5 1.859657 0.564274 -0.198763 -1.794173 6 -0.649153 -3.129258 0.063418 -0.727936 7 0.862402 -0.800031 -1.954784 -0.028607 8 -0.659489 0.525583 0.820922 -1.368544
这里要注意,我们增加了ignore_index=True参数,如果不设置的话,那么增加的新行的index仍然是3,这样在后续的处理中可能有存在问题。具体也需要看情况来处理。
df.append(s) Out[164]: A B C D 0 -0.496709 0.573449 0.076059 0.685285 1 0.479253 0.587376 -1.240070 -0.907910 2 -0.052609 -0.287786 -1.949402 1.163323 3 -0.659489 0.525583 0.820922 -1.368544 4 1.270453 -1.813249 0.059915 0.586703 5 1.859657 0.564274 -0.198763 -1.794173 6 -0.649153 -3.129258 0.063418 -0.727936 7 0.862402 -0.800031 -1.954784 -0.028607 3 -0.659489 0.525583 0.820922 -1.368544分组 Grouping
一般分组统计有三个步骤:
分组:选择需要的数据
计算:对每个分组进行计算
合并:把分组计算的结果合并为一个数据结构中
df = pd.DataFrame({"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], "B": ["one", "one", "two", "three", "two", "two", "one", "three"], "C": np.random.randn(8), "D": np.random.randn(8)}) df Out[166]: A B C D 0 foo one -1.252153 0.172863 1 bar one 0.238547 -0.648980 2 foo two 0.756975 0.195766 3 bar three -0.933405 -0.320043 4 foo two -0.310650 -1.388255 5 bar two 1.568550 -1.911817 6 foo one -0.340290 -2.141259
按A列分组并使用sum函数进行计算:
df.groupby("A").sum() Out[167]: C D A bar 0.873692 -2.880840 foo -1.817027 -5.833961
这里由于B列无法应用sum函数,所以直接被忽略了。
按A、B列分组并使用sum函数进行计算:
df.groupby(["A", "B"]).sum() Out[168]: C D A B bar one 0.238547 -0.648980 three -0.933405 -0.320043 two 1.568550 -1.911817 foo one -1.592443 -1.968396 three -0.670909 -2.673075 two 0.446325 -1.192490
这样就有了一个多层index的结果集。
整形 Reshaping
堆叠 Stack
python的zip函数可以将对象中对应的元素打包成一个个的元组:
tuples = list(zip(["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"])) tuples Out[172]: [("bar", "one"), ("bar", "two"), ("baz", "one"), ("baz", "two"), ("foo", "one"), ("foo", "two"), ("qux", "one"), ("qux", "two")] ## 设置两级索引 index = pd.MultiIndex.from_tuples(tuples, names=["first", "second"]) index Out[174]: MultiIndex(levels=[["bar", "baz", "foo", "qux"], ["one", "two"]], codes=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]], names=["first", "second"]) ## 创建DataFrame df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=["A", "B"]) df Out[176]: A B first second bar one -0.501215 -0.947993 two -0.828914 0.232167 baz one 1.245419 1.006092 two 1.016656 -0.441073 foo one 0.479037 -0.500034 two -1.113097 0.591696 qux one -0.014760 -0.320735 two -0.648743 1.499899 ## 选取DataFrame df2 = df[:4] df2 Out[179]: A B first second bar one -0.501215 -0.947993 two -0.828914 0.232167 baz one 1.245419 1.006092 two 1.016656 -0.441073
使用stack()方法,可以通过堆叠的方式将二维数据变成为一维数据:
stacked = df2.stack() stacked Out[181]: first second bar one A -0.501215 B -0.947993 two A -0.828914 B 0.232167 baz one A 1.245419 B 1.006092 two A 1.016656 B -0.441073 dtype: float64
对应的逆操作为unstacked()方法:
stacked.unstack() Out[182]: A B first second bar one -0.501215 -0.947993 two -0.828914 0.232167 baz one 1.245419 1.006092 two 1.016656 -0.441073 stacked.unstack(1) Out[183]: second one two first bar A -0.501215 -0.828914 B -0.947993 0.232167 baz A 1.245419 1.016656 B 1.006092 -0.441073 stacked.unstack(0) Out[184]: first bar baz second one A -0.501215 1.245419 B -0.947993 1.006092 two A -0.828914 1.016656 B 0.232167 -0.441073
unstack()默认对最后一层级进行操作,也可通过输入参数指定。
表格转置
df = pd.DataFrame({"A": ["one", "one", "two", "three"] * 3, "B": ["A", "B", "C"] * 4, "C": ["foo", "foo", "foo", "bar", "bar", "bar"] * 2, "D": np.random.randn(12), "E": np.random.randn(12)}) df Out[190]: A B C D E 0 one A foo -0.933264 -2.387490 1 one B foo -0.288101 0.023214 2 two C foo 0.594490 0.418505 3 three A bar 0.450683 1.939623 4 one B bar 0.243897 -0.965783 5 one C bar -0.705494 -0.078283 6 two A foo 1.560352 0.419907 7 three B foo 0.199453 0.998711 8 one C foo 1.426861 -1.108297 9 one A bar -0.570951 -0.022560 10 two B bar -0.350937 -1.767804 11 three C bar 0.983465 0.065792
通过pivot_table()方法可以很方便的进行行列的转换:
pd.pivot_table(df, values="D", index=["A", "B"], columns=["C"]) Out[191]: C bar foo A B one A -0.570951 -0.933264 B 0.243897 -0.288101 C -0.705494 1.426861 three A 0.450683 NaN B NaN 0.199453 C 0.983465 NaN two A NaN 1.560352 B -0.350937 NaN C NaN 0.594490
转换中,涉及到空值部分会自动填充为NaN。
时间序列 Time Seriespandas的在时序转换方面十分强大,可以很方便的进行各种转换。
时间间隔调整
rng = pd.date_range("1/1/2019", periods=100, freq="S") rng[:5] Out[214]: DatetimeIndex(["2019-01-01 00:00:00", "2019-01-01 00:00:01", "2019-01-01 00:00:02", "2019-01-01 00:00:03", "2019-01-01 00:00:04"], dtype="datetime64[ns]", freq="S") ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng) ts.head(5) Out[216]: 2019-01-01 00:00:00 245 2019-01-01 00:00:01 347 2019-01-01 00:00:02 113 2019-01-01 00:00:03 196 2019-01-01 00:00:04 131 Freq: S, dtype: int64 ## 按10s间隔进行重新采样 ts1 = ts.resample("10S") ts1 Out[209]: DatetimeIndexResampler [freq=<10 * Seconds>, axis=0, closed=left, label=left, convention=start, base=0] ## 用求平均的方式进行数据整合 ts1.mean() Out[218]: 2019-01-01 00:00:00 174.0 2019-01-01 00:00:10 278.5 2019-01-01 00:00:20 281.8 2019-01-01 00:00:30 337.2 2019-01-01 00:00:40 221.0 2019-01-01 00:00:50 277.1 2019-01-01 00:01:00 171.0 2019-01-01 00:01:10 321.0 2019-01-01 00:01:20 318.6 2019-01-01 00:01:30 302.6 Freq: 10S, dtype: float64 ## 用求和的方式进行数据整合 ts1.sum() Out[219]: 2019-01-01 00:00:00 1740 2019-01-01 00:00:10 2785 2019-01-01 00:00:20 2818 2019-01-01 00:00:30 3372 2019-01-01 00:00:40 2210 2019-01-01 00:00:50 2771 2019-01-01 00:01:00 1710 2019-01-01 00:01:10 3210 2019-01-01 00:01:20 3186 2019-01-01 00:01:30 3026 Freq: 10S, dtype: int64
这里先通过resample进行重采样,在指定sum()或者mean()等方式来指定冲采样的处理方式。
显示时区:
rng = pd.date_range("1/1/2019 00:00", periods=5, freq="D") rng Out[221]: DatetimeIndex(["2019-01-01", "2019-01-02", "2019-01-03", "2019-01-04", "2019-01-05"], dtype="datetime64[ns]", freq="D") ts = pd.Series(np.random.randn(len(rng)), rng) ts Out[223]: 2019-01-01 -2.327686 2019-01-02 1.527872 2019-01-03 0.063982 2019-01-04 -0.213572 2019-01-05 -0.014856 Freq: D, dtype: float64 ts_utc = ts.tz_localize("UTC") ts_utc Out[225]: 2019-01-01 00:00:00+00:00 -2.327686 2019-01-02 00:00:00+00:00 1.527872 2019-01-03 00:00:00+00:00 0.063982 2019-01-04 00:00:00+00:00 -0.213572 2019-01-05 00:00:00+00:00 -0.014856 Freq: D, dtype: float64
转换时区:
ts_utc.tz_convert("US/Eastern") Out[226]: 2018-12-31 19:00:00-05:00 -2.327686 2019-01-01 19:00:00-05:00 1.527872 2019-01-02 19:00:00-05:00 0.063982 2019-01-03 19:00:00-05:00 -0.213572 2019-01-04 19:00:00-05:00 -0.014856 Freq: D, dtype: float64
时间格式转换
rng = pd.date_range("1/1/2019", periods=5, freq="M") ts = pd.Series(np.random.randn(len(rng)), index=rng) ts Out[230]: 2019-01-31 0.197134 2019-02-28 0.569082 2019-03-31 -0.322141 2019-04-30 0.005778 2019-05-31 -0.082306 Freq: M, dtype: float64 ps = ts.to_period() ps Out[232]: 2019-01 0.197134 2019-02 0.569082 2019-03 -0.322141 2019-04 0.005778 2019-05 -0.082306 Freq: M, dtype: float64 ps.to_timestamp() Out[233]: 2019-01-01 0.197134 2019-02-01 0.569082 2019-03-01 -0.322141 2019-04-01 0.005778 2019-05-01 -0.082306 Freq: MS, dtype: float64
在是时间段和时间转换过程中,有一些很方便的算术方法可以使用,比如我们转换如下两个频率:
1、按季度划分,且每个年的最后一个月是11月。
2、按季度划分,每个月开始为频率一中下一个月的早上9点。
prng = pd.period_range("2018Q1", "2019Q4", freq="Q-NOV") prng Out[243]: PeriodIndex(["2018Q1", "2018Q2", "2018Q3", "2018Q4", "2019Q1", "2019Q2", "2019Q3", "2019Q4"], dtype="period[Q-NOV]", freq="Q-NOV") ts = pd.Series(np.random.randn(len(prng)), prng) ts Out[245]: 2018Q1 -0.112692 2018Q2 -0.507304 2018Q3 -0.324846 2018Q4 0.549671 2019Q1 -0.897732 2019Q2 1.130070 2019Q3 -0.399814 2019Q4 0.830488 Freq: Q-NOV, dtype: float64 ts.index = (prng.asfreq("M", "e") + 1).asfreq("H", "s") + 9 ts Out[247]: 2018-03-01 09:00 -0.112692 2018-06-01 09:00 -0.507304 2018-09-01 09:00 -0.324846 2018-12-01 09:00 0.549671 2019-03-01 09:00 -0.897732 2019-06-01 09:00 1.130070 2019-09-01 09:00 -0.399814 2019-12-01 09:00 0.830488 Freq: H, dtype: float64
注意:这个例子有点怪。可以这样理解,我们先将prng直接转换为按小时显示:
prng.asfreq("H", "end") Out[253]: PeriodIndex(["2018-02-28 23:00", "2018-05-31 23:00", "2018-08-31 23:00", "2018-11-30 23:00", "2019-02-28 23:00", "2019-05-31 23:00", "2019-08-31 23:00", "2019-11-30 23:00"], dtype="period[H]", freq="H")
我们要把时间转换为下一个月的早上9点,所以先转换为按月显示,并每个月加1(即下个月),然后按小时显示并加9(早上9点)。
另外例子中s参数是start的简写,e参数是end的简写,Q-NOV即表示按季度,且每年的NOV是最后一个月。
更多了freq简称可以参考:http://pandas.pydata.org/pand...
asfreq()方法介绍可参考:http://pandas.pydata.org/pand...
分类目录类型 Categoricals关于Categories类型介绍可以参考:http://pandas.pydata.org/pand...
类型转换:astype("category")
df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": ["a", "b", "b", "a", "a", "e"]}) df Out[255]: id raw_grade 0 1 a 1 2 b 2 3 b 3 4 a 4 5 a 5 6 e df["grade"] = df["raw_grade"].astype("category") df["grade"] Out[257]: 0 a 1 b 2 b 3 a 4 a 5 e Name: grade, dtype: category Categories (3, object): [a, b, e]
重命名分类:cat
df["grade"].cat.categories = ["very good", "good", "very bad"] df["grade"] Out[269]: 0 very good 1 good 2 good 3 very good 4 very good 5 very bad Name: grade, dtype: category Categories (3, object): [very good, good, very bad]
重分类:
df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium","good", "very good"]) df["grade"] Out[271]: 0 very good 1 good 2 good 3 very good 4 very good 5 very bad Name: grade, dtype: category Categories (5, object): [very bad, bad, medium, good, very good]
排列
df.sort_values(by="grade") Out[272]: id raw_grade grade 5 6 e very bad 1 2 b good 2 3 b good 0 1 a very good 3 4 a very good 4 5 a very good
分组
df.groupby("grade").size() Out[273]: grade very bad 1 bad 0 medium 0 good 2 very good 3 dtype: int64画图 Plotting
Series
ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000)) ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2019", periods=1000)) ts = ts.cumsum() ts.plot() Out[277]:import matplotlib.pyplot as plt plt.show()
DataFrame画图
使用plot可以把所有的列都通过标签的形式展示出来:
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=["A", "B", "C", "D"]) df = df.cumsum() plt.figure() Out[282]:导入导出数据 Getting Data In/Out
CSV
写入:
df.to_csv("foo.csv")
读取:
pd.read_csv("foo.csv")
HDF5
写入:
df.to_hdf("foo.h5", "df")
读取:
pd.read_hdf("foo.h5", "df")
Excel
写入:
df.to_excel("foo.xlsx", sheet_name="Sheet1")
读取:
pd.read_excel("foo.xlsx", "Sheet1", index_col=None, na_values=["NA"])异常处理 Gotchas
如果有一些异常情况比如:
>>> if pd.Series([False, True, False]): ... print("I was true") Traceback ... ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
可以参考如下链接:
http://pandas.pydata.org/pand...
http://pandas.pydata.org/pand...
文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。
转载请注明本文地址:https://www.ucloud.cn/yun/43272.html
摘要:去吧,参加一个在上正在举办的实时比赛吧试试你所学到的全部知识微软雅黑深度学习终于看到这个,兴奋吧现在,你已经学到了绝大多数关于机器学习的技术,是时候试试深度学习了。微软雅黑对于深度学习,我也是个新手,就请把这些建议当作参考吧。 如果你想做一个数据科学家,或者作为一个数据科学家你想扩展自己的工具和知识库,那么,你来对地方了。这篇文章的目的,是给刚开始使用Python进行数据分析的人,指明一条全...
?作者主页:小小明-代码实体 ?简介:Python领域优质创作者?、数据处理专家✌ ?欢迎点赞 ? 收藏 ⭐留言 ? 昨晚有位童鞋一道Pandas面试题完全没有思路不会做,通过黄同学找到我时,这道题目离提交答案仅剩20分钟,不过我最终还是在15分钟之内解决了问题,这整个过程简直是刺激~??? 原题题目如下: 最终要求输出: 要在20分钟内解决这个问题,对于我来说最困难的第一步就是理解...
摘要:它还使用执行所谓的链式索引,这通常会导致意外的结果。但这种方法的最大问题是计算的时间成本。这些都是一次产生一行的生成器方法,类似中使用的用法。在这种情况下,所花费的时间大约是方法的一半。根据每小时所属的应用一组标签。 作者:xiaoyu 微信公众号:Python数据科学 知乎:python数据分析师 showImg(https://segmentfault.com/img/bVboe...
摘要:做一个搬运工,希望自己能努力学习,也希望大神们的东西能让更多的人看到不断更新更新日志新增了网络安全分类,整理了排版布局新增了的链接,将一些杂七杂八的东西弄到了一篇新文章上了,叫做积累与杂货铺一以及相关教程的规范与相关中文学习大本营中文文档简 做一个搬运工,希望自己能努力学习,也希望大神们的东西能让更多的人看到 不断更新 更新日志:2017.10.13 新增了网络安全分类,整理了排版布局...
摘要:做一个搬运工,希望自己能努力学习,也希望大神们的东西能让更多的人看到不断更新更新日志新增了网络安全分类,整理了排版布局新增了的链接,将一些杂七杂八的东西弄到了一篇新文章上了,叫做积累与杂货铺一以及相关教程的规范与相关中文学习大本营中文文档简 做一个搬运工,希望自己能努力学习,也希望大神们的东西能让更多的人看到 不断更新 更新日志:2017.10.13 新增了网络安全分类,整理了排版布局...
阅读 6211·2021-11-22 15:32
阅读 828·2021-11-11 16:54
阅读 3165·2021-10-13 09:40
阅读 2171·2021-09-03 10:35
阅读 1841·2021-08-09 13:47
阅读 1880·2019-08-30 15:55
阅读 1940·2019-08-30 15:43
阅读 2461·2019-08-29 17:06