资讯专栏INFORMATION COLUMN

Python 二分查找与 bisect 模块

URLOS / 2385人阅读

摘要:对于大数据量,则可以用二分查找进行优化。有一个模块,用于维护有序列表。和用于指定列表的区间,默认是使用整个列表。模块提供的函数可以分两类只用于查找,不进行实际的插入而则用于实际插入。

Python 的列表(list)内部实现是一个数组,也就是一个线性表。在列表中查找元素可以使用 list.index() 方法,其时间复杂度为O(n)。对于大数据量,则可以用二分查找进行优化。二分查找要求对象必须有序,其基本原理如下:

1.从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;

2.如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。

3.如果在某一步骤数组为空,则代表找不到。

二分查找也成为折半查找,算法每一次比较都使搜索范围缩小一半, 其时间复杂度为 O(logn)。

我们分别用递归和循环来实现二分查找:

def binary_search_recursion(lst, value, low, high):
    if high < low:
        return None
    mid = (low + high) / 2
    if lst[mid] > value:
        return binary_search_recursion(lst, value, low, mid-1)
    elif lst[mid] < value:
        return binary_search_recursion(lst, value, mid+1, high)
    else:
        return mid

def binary_search_loop(lst,value):
    low, high = 0, len(lst)-1
    while low <= high:
        mid = (low + high) / 2
        if lst[mid] < value:
            low = mid + 1
        elif lst[mid] > value:
            high = mid - 1
        else:
            return mid
    return None

接着对这两种实现进行一下性能测试:

if __name__ == "__main__":
    import random
    lst = [random.randint(0, 10000) for _ in xrange(100000)]
    lst.sort()

    def test_recursion():
        binary_search_recursion(lst, 999, 0, len(lst)-1)

    def test_loop():
        binary_search_loop(lst, 999)

    import timeit
    t1 = timeit.Timer("test_recursion()", setup="from __main__ import test_recursion")
    t2 = timeit.Timer("test_loop()", setup="from __main__ import test_loop")

    print "Recursion:", t1.timeit()
    print "Loop:", t2.timeit()

执行结果如下:

Recursion: 3.12596702576
Loop: 2.08254289627

可以看出循环方式比递归效率高。

Python 有一个 bisect 模块,用于维护有序列表。bisect 模块实现了一个算法用于插入元素到有序列表。在一些情况下,这比反复排序列表或构造一个大的列表再排序的效率更高。Bisect 是二分法的意思,这里使用二分法来排序,它会将一个元素插入到一个有序列表的合适位置,这使得不需要每次调用 sort 的方式维护有序列表。

下面是一个简单的使用示例:

import bisect
import random

random.seed(1)

print"New  Pos Contents"
print"---  --- --------"

l = []
for i in range(1, 15):
    r = random.randint(1, 100)
    position = bisect.bisect(l, r)
    bisect.insort(l, r)
    print"%3d  %3d" % (r, position), l

输出结果:

New  Pos Contents
---  --- --------
 14    0 [14]
 85    1 [14, 85]
 77    1 [14, 77, 85]
 26    1 [14, 26, 77, 85]
 50    2 [14, 26, 50, 77, 85]
 45    2 [14, 26, 45, 50, 77, 85]
 66    4 [14, 26, 45, 50, 66, 77, 85]
 79    6 [14, 26, 45, 50, 66, 77, 79, 85]
 10    0 [10, 14, 26, 45, 50, 66, 77, 79, 85]
  3    0 [3, 10, 14, 26, 45, 50, 66, 77, 79, 85]
 84    9 [3, 10, 14, 26, 45, 50, 66, 77, 79, 84, 85]
 44    4 [3, 10, 14, 26, 44, 45, 50, 66, 77, 79, 84, 85]
 77    9 [3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]
  1    0 [1, 3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]

Bisect模块提供的函数有:

bisect.bisect_left(a,x, lo=0, hi=len(a)) :

查找在有序列表 a 中插入 x 的index。lo 和 hi 用于指定列表的区间,默认是使用整个列表。如果 x 已经存在,在其左边插入。返回值为 index。

bisect.bisect_right(a,x, lo=0, hi=len(a))

bisect.bisect(a, x,lo=0, hi=len(a)) :

这2个函数和 bisect_left 类似,但如果 x 已经存在,在其右边插入。

bisect.insort_left(a,x, lo=0, hi=len(a)) :

在有序列表 a 中插入 x。和 a.insert(bisect.bisect_left(a,x, lo, hi), x) 的效果相同。

bisect.insort_right(a,x, lo=0, hi=len(a))

bisect.insort(a, x,lo=0, hi=len(a)) :

和 insort_left 类似,但如果 x 已经存在,在其右边插入。

Bisect 模块提供的函数可以分两类: bisect* 只用于查找 index, 不进行实际的插入;而 insort* 则用于实际插入。该模块比较典型的应用是计算分数等级:

def grade(score,breakpoints=[60, 70, 80, 90], grades="FDCBA"):
    i = bisect.bisect(breakpoints, score)
    return grades[i]

print [grade(score) for score in [33, 99, 77, 70, 89, 90, 100]]

执行结果:

["F", "A", "C", "C", "B", "A", "A"]

同样,我们可以用 bisect 模块实现二分查找:

def binary_search_bisect(lst, x):
    from bisect import bisect_left
    i = bisect_left(lst, x)
    if i != len(lst) and lst[i] == x:
        return i
    return None

我们再来测试一下它与递归和循环实现的二分查找的性能:

Recursion: 4.00940990448
Loop: 2.6583480835
Bisect: 1.74922895432

可以看到其比循环实现略快,比递归实现差不多要快一半。

Python 著名的数据处理库 numpy 也有一个用于二分查找的函数 numpy.searchsorted, 用法与 bisect 基本相同,只不过如果要右边插入时,需要设置参数 side="right",例如:

>>> import numpy as np
>>> from bisect import bisect_left, bisect_right
>>> data = [2, 4, 7, 9]
>>> bisect_left(data, 4)
1
>>> np.searchsorted(data, 4)
1
>>> bisect_right(data, 4)
2
>>> np.searchsorted(data, 4, side="right")
2

那么,我们再来比较一下性能:

In [20]: %timeit -n 100 bisect_left(data, 99999)
100 loops, best of 3: 670 ns per loop

In [21]: %timeit -n 100 np.searchsorted(data, 99999)
100 loops, best of 3: 56.9 ms per loop

In [22]: %timeit -n 100 bisect_left(data, 8888)
100 loops, best of 3: 961 ns per loop

In [23]: %timeit -n 100 np.searchsorted(data, 8888)
100 loops, best of 3: 57.6 ms per loop

In [24]: %timeit -n 100 bisect_left(data, 777777)
100 loops, best of 3: 670 ns per loop

In [25]: %timeit -n 100 np.searchsorted(data, 777777)
100 loops, best of 3: 58.4 ms per loop

可以发现 numpy.searchsorted 效率是很低的,跟 bisect 根本不在一个数量级上。因此 searchsorted 不适合用于搜索普通的数组,但是它用来搜索 numpy.ndarray 是相当快的:

In [30]: data_ndarray = np.arange(0, 1000000)

In [31]: %timeit np.searchsorted(data_ndarray, 99999)
The slowest run took 16.04 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 996 ns per loop

In [32]: %timeit np.searchsorted(data_ndarray, 8888)
The slowest run took 18.22 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 994 ns per loop

In [33]: %timeit np.searchsorted(data_ndarray, 777777)
The slowest run took 31.32 times longer than the fastest. This could mean that an intermediate result is being cached.
1000000 loops, best of 3: 990 ns per loop

numpy.searchsorted 可以同时搜索多个值:

>>> np.searchsorted([1,2,3,4,5], 3)
2
>>> np.searchsorted([1,2,3,4,5], 3, side="right")
3
>>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
array([0, 5, 1, 2])

文章版权归作者所有,未经允许请勿转载,若此文章存在违规行为,您可以联系管理员删除。

转载请注明本文地址:https://www.ucloud.cn/yun/43089.html

相关文章

  • Monorepo——大型前端项目的代码管理方式

    摘要:目前最常见的解决方案是和的特性。具体的使用方法移步官网而使用作为包管理器的同学,可以在中以字段声明,就会以的方式管理。这样的话,无论你的包管理器是还是,都能发挥的优势要是包管理是,就会把依赖安装交给处理。 最近我接手了一个项目,代码量比较大、有点复杂。仓库 clone 下来代码有 50+ MB,npm install 安装完体积飚到了近 2GB …… 熟悉了一下,这个项目比较复杂,采用...

    ziwenxie 评论0 收藏0
  • Python学习之路21-序列构成的数组

    摘要:第行把具名元组以的形式返回。对序列使用和通常号两侧的序列由相同类型的数据所构成当然不同类型的也可以相加,返回一个新序列。从上面的结果可以看出,它虽抛出了异常,但仍完成了操作查看字节码并不难,而且它对我们了解代码背后的运行机制很有帮助。 《流畅的Python》笔记。接下来的三篇都是关于Python的数据结构,本篇主要是Python中的各序列类型 1. 内置序列类型概览 Python标准库...

    ralap 评论0 收藏0
  • 跟黄申老师学数学(python实现)-01迭代法

    摘要:在排好序的单词列表中查找某个单词优化和的初始化,从开始,这样避免只有时的优化减少了内存溢出的风险优化循环时,。 直观定义 迭代法(Iterative Method),简单来说,其实就是不断地用旧的变量值,递推计算新的变量值。循环。 具体应用 求数值的精确/近似解 二分法(Bisection method) 牛顿迭代法(Newton’s method) 在一定范围内查找目标值...

    Nino 评论0 收藏0

发表评论

0条评论

URLOS

|高级讲师

TA的文章

阅读更多
最新活动
阅读需要支付1元查看
<